185 lines
7.1 KiB
Text
185 lines
7.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||
/-!
|
||
# The Proper Lorentz Group
|
||
|
||
The proper Lorentz group is the subgroup of the Lorentz group with determinant `1`.
|
||
|
||
We define the give a series of lemmas related to the determinant of the Lorentz group.
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
namespace LorentzGroup
|
||
|
||
open minkowskiMetric
|
||
|
||
variable {d : ℕ}
|
||
|
||
/-- The determinant of a member of the Lorentz group is `1` or `-1`. -/
|
||
lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 ∨ Λ.1.det = -1 := by
|
||
refine mul_self_eq_one_iff.mp ?_
|
||
simpa only [det_mul, det_dual, det_one] using congrArg det ((mem_iff_self_mul_dual).mp Λ.2)
|
||
|
||
local notation "ℤ₂" => Multiplicative (ZMod 2)
|
||
|
||
|
||
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
|
||
|
||
instance : DiscreteTopology ℤ₂ := by
|
||
exact forall_open_iff_discrete.mp fun _ => trivial
|
||
|
||
instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
|
||
|
||
/-- A continuous function from `({-1, 1} : Set ℝ)` to `ℤ₂`. -/
|
||
@[simps!]
|
||
def coeForℤ₂ : C(({-1, 1} : Set ℝ), ℤ₂) where
|
||
toFun x := if x = ⟨1, Set.mem_insert_of_mem (-1) rfl⟩
|
||
then Additive.toMul 0 else Additive.toMul (1 : ZMod 2)
|
||
continuous_toFun := continuous_of_discreteTopology
|
||
|
||
/-- The continuous map taking a Lorentz matrix to its determinant. -/
|
||
def detContinuous : C(𝓛 d, ℤ₂) :=
|
||
ContinuousMap.comp coeForℤ₂ {
|
||
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
|
||
continuous_toFun := by
|
||
refine Continuous.subtype_mk ?_ _
|
||
exact Continuous.matrix_det $
|
||
Continuous.comp' (continuous_iff_le_induced.mpr fun U a => a) continuous_id'
|
||
}
|
||
|
||
lemma detContinuous_eq_one (Λ : LorentzGroup d) :
|
||
detContinuous Λ = Additive.toMul 0 ↔ Λ.1.det = 1 := by
|
||
simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeForℤ₂_apply,
|
||
Subtype.mk.injEq, ite_eq_left_iff, toMul_eq_one]
|
||
simp only [toMul_zero, ite_eq_left_iff, toMul_eq_one]
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· by_contra hn
|
||
have h' := h hn
|
||
change (1 : Fin 2) = (0 : Fin 2) at h'
|
||
simp only [Fin.isValue, one_ne_zero] at h'
|
||
· intro h'
|
||
exact False.elim (h' h)
|
||
|
||
lemma detContinuous_eq_zero (Λ : LorentzGroup d) :
|
||
detContinuous Λ = Additive.toMul (1 : ZMod 2) ↔ Λ.1.det = - 1 := by
|
||
simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeForℤ₂_apply,
|
||
Subtype.mk.injEq, Nat.reduceAdd]
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· by_contra hn
|
||
rw [if_pos] at h
|
||
· change (0 : Fin 2) = (1 : Fin 2) at h
|
||
simp only [Fin.isValue, zero_ne_one] at h
|
||
· cases' det_eq_one_or_neg_one Λ with h2 h2
|
||
· simp_all only [ite_true]
|
||
· simp_all only [not_true_eq_false]
|
||
· rw [if_neg]
|
||
· rfl
|
||
· cases' det_eq_one_or_neg_one Λ with h2 h2
|
||
· rw [h]
|
||
linarith
|
||
· linarith
|
||
|
||
lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
|
||
detContinuous Λ = detContinuous Λ' ↔ Λ.1.det = Λ'.1.det := by
|
||
cases' det_eq_one_or_neg_one Λ with h1 h1
|
||
· rw [h1, (detContinuous_eq_one Λ).mpr h1]
|
||
cases' det_eq_one_or_neg_one Λ' with h2 h2
|
||
· rw [h2, (detContinuous_eq_one Λ').mpr h2]
|
||
simp only [toMul_zero]
|
||
· rw [h2, (detContinuous_eq_zero Λ').mpr h2]
|
||
erw [Additive.toMul.apply_eq_iff_eq]
|
||
change (0 : Fin 2) = (1 : Fin 2) ↔ _
|
||
simp only [Fin.isValue, zero_ne_one, false_iff]
|
||
linarith
|
||
· rw [h1, (detContinuous_eq_zero Λ).mpr h1]
|
||
cases' det_eq_one_or_neg_one Λ' with h2 h2
|
||
· rw [h2, (detContinuous_eq_one Λ').mpr h2]
|
||
erw [Additive.toMul.apply_eq_iff_eq]
|
||
change (1 : Fin 2) = (0 : Fin 2) ↔ _
|
||
simp only [Fin.isValue, one_ne_zero, false_iff]
|
||
linarith
|
||
· rw [h2, (detContinuous_eq_zero Λ').mpr h2]
|
||
simp only [Nat.reduceAdd]
|
||
|
||
/-- The representation taking a Lorentz matrix to its determinant. -/
|
||
@[simps!]
|
||
def detRep : 𝓛 d →* ℤ₂ where
|
||
toFun Λ := detContinuous Λ
|
||
map_one' := by
|
||
simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk,
|
||
lorentzGroupIsGroup_one_coe, det_one, coeForℤ₂_apply, ↓reduceIte]
|
||
map_mul' Λ1 Λ2 := by
|
||
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
|
||
mul_ite, mul_one, ite_mul, one_mul]
|
||
cases' det_eq_one_or_neg_one Λ1 with h1 h1
|
||
· rw [(detContinuous_eq_one Λ1).mpr h1]
|
||
cases' det_eq_one_or_neg_one Λ2 with h2 h2
|
||
· rw [(detContinuous_eq_one Λ2).mpr h2]
|
||
apply (detContinuous_eq_one _).mpr
|
||
simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_one]
|
||
· rw [(detContinuous_eq_zero Λ2).mpr h2]
|
||
apply (detContinuous_eq_zero _).mpr
|
||
simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_neg, mul_one]
|
||
· rw [(detContinuous_eq_zero Λ1).mpr h1]
|
||
cases' det_eq_one_or_neg_one Λ2 with h2 h2
|
||
· rw [(detContinuous_eq_one Λ2).mpr h2]
|
||
apply (detContinuous_eq_zero _).mpr
|
||
simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_one]
|
||
· rw [(detContinuous_eq_zero Λ2).mpr h2]
|
||
apply (detContinuous_eq_one _).mpr
|
||
simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_neg, mul_one, neg_neg]
|
||
|
||
lemma detRep_continuous : Continuous (@detRep d) := detContinuous.2
|
||
|
||
lemma det_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
|
||
Λ.1.det = Λ'.1.det := by
|
||
obtain ⟨s, hs, hΛ'⟩ := h
|
||
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
|
||
haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1
|
||
simpa [f, detContinuous_eq_iff_det_eq] using
|
||
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
|
||
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
|
||
|
||
lemma detRep_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
|
||
detRep Λ = detRep Λ' := by
|
||
simp only [detRep_apply, detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk,
|
||
coeForℤ₂_apply, Subtype.mk.injEq]
|
||
rw [det_on_connected_component h]
|
||
|
||
lemma det_of_joined {Λ Λ' : LorentzGroup d} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det :=
|
||
det_on_connected_component $ pathComponent_subset_component _ h
|
||
|
||
/-- A Lorentz Matrix is proper if its determinant is 1. -/
|
||
@[simp]
|
||
def IsProper (Λ : LorentzGroup d) : Prop := Λ.1.det = 1
|
||
|
||
instance : DecidablePred (@IsProper d) := by
|
||
intro Λ
|
||
apply Real.decidableEq
|
||
|
||
lemma IsProper_iff (Λ : LorentzGroup d) : IsProper Λ ↔ detRep Λ = 1 := by
|
||
rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep), detRep_apply, detRep_apply,
|
||
detContinuous_eq_iff_det_eq]
|
||
simp only [IsProper, lorentzGroupIsGroup_one_coe, det_one]
|
||
|
||
lemma id_IsProper : @IsProper d 1 := by
|
||
simp [IsProper]
|
||
|
||
lemma isProper_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
|
||
IsProper Λ ↔ IsProper Λ' := by
|
||
simp [detRep_apply, detRep_apply, detContinuous]
|
||
rw [det_on_connected_component h]
|
||
|
||
end LorentzGroup
|
||
|
||
end
|