82 lines
3.4 KiB
Text
82 lines
3.4 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldStruct.Basic
|
||
import HepLean.PerturbationTheory.CreateAnnihilate
|
||
/-!
|
||
|
||
# Creation and annihlation parts of fields
|
||
|
||
-/
|
||
|
||
namespace FieldStruct
|
||
variable (𝓕 : FieldStruct)
|
||
|
||
/-- To each state the specificaition of the type of creation and annihlation parts.
|
||
For asymptotic staes there is only one allowed part, whilst for position states
|
||
there is two. -/
|
||
def statesToCrAnType : 𝓕.States → Type
|
||
| States.negAsymp _ => Unit
|
||
| States.position _ => CreateAnnihilate
|
||
| States.posAsymp _ => Unit
|
||
|
||
/-- The instance of a finite type on `𝓕.statesToCreateAnnihilateType i`. -/
|
||
instance : ∀ i, Fintype (𝓕.statesToCrAnType i) := fun i =>
|
||
match i with
|
||
| States.negAsymp _ => inferInstanceAs (Fintype Unit)
|
||
| States.position _ => inferInstanceAs (Fintype CreateAnnihilate)
|
||
| States.posAsymp _ => inferInstanceAs (Fintype Unit)
|
||
|
||
/-- The instance of a decidable equality on `𝓕.statesToCreateAnnihilateType i`. -/
|
||
instance : ∀ i, DecidableEq (𝓕.statesToCrAnType i) := fun i =>
|
||
match i with
|
||
| States.negAsymp _ => inferInstanceAs (DecidableEq Unit)
|
||
| States.position _ => inferInstanceAs (DecidableEq CreateAnnihilate)
|
||
| States.posAsymp _ => inferInstanceAs (DecidableEq Unit)
|
||
|
||
/-- The equivalence between `𝓕.statesToCreateAnnihilateType i` and
|
||
`𝓕.statesToCreateAnnihilateType j` from an equality `i = j`. -/
|
||
def statesToCreateAnnihilateTypeCongr : {i j : 𝓕.States} → i = j →
|
||
𝓕.statesToCrAnType i ≃ 𝓕.statesToCrAnType j
|
||
| _, _, rfl => Equiv.refl _
|
||
|
||
/-- A creation and annihlation state is a state plus an valid specification of the
|
||
creation or annihliation part of that state. (For asympotic states there is only one valid
|
||
choice). -/
|
||
def CrAnStates : Type := Σ (s : 𝓕.States), 𝓕.statesToCrAnType s
|
||
|
||
/-- The map from creation and annihlation states to their underlying states. -/
|
||
def crAnStatesToStates : 𝓕.CrAnStates → 𝓕.States := Sigma.fst
|
||
|
||
@[simp]
|
||
lemma crAnStatesToStates_prod (s : 𝓕.States) (t : 𝓕.statesToCrAnType s) :
|
||
𝓕.crAnStatesToStates ⟨s, t⟩ = s := rfl
|
||
|
||
/-- The map from creation and annihlation states to the type `CreateAnnihilate`
|
||
specifying if a state is a creation or an annihilation state. -/
|
||
def crAnStatesToCreateAnnihilate : 𝓕.CrAnStates → CreateAnnihilate
|
||
| ⟨States.negAsymp _, _⟩ => CreateAnnihilate.create
|
||
| ⟨States.position _, CreateAnnihilate.create⟩ => CreateAnnihilate.create
|
||
| ⟨States.position _, CreateAnnihilate.annihilate⟩ => CreateAnnihilate.annihilate
|
||
| ⟨States.posAsymp _, _⟩ => CreateAnnihilate.annihilate
|
||
|
||
/-- Takes a `CrAnStates` state to its corresponding fields statistic (bosonic or fermionic). -/
|
||
def crAnStatistics : 𝓕.CrAnStates → FieldStatistic :=
|
||
𝓕.statesStatistic ∘ 𝓕.crAnStatesToStates
|
||
|
||
/-- The field statistic of a `CrAnState`. -/
|
||
scoped[FieldStruct] notation 𝓕 "|>ₛ" φ =>
|
||
(crAnStatistics 𝓕) φ
|
||
|
||
/-- The field statistic of a list of `CrAnState`s. -/
|
||
scoped[FieldStruct] notation 𝓕 "|>ₛ" φ => FieldStatistic.ofList
|
||
(crAnStatistics 𝓕) φ
|
||
|
||
/-- The `CreateAnnihilate` value of a `CrAnState`s, i.e. whether it is a creation or
|
||
annihilation operator. -/
|
||
scoped[FieldStruct] infixl:80 "|>ᶜ" =>
|
||
crAnStatesToCreateAnnihilate
|
||
|
||
end FieldStruct
|