372 lines
14 KiB
Text
372 lines
14 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||
/-!
|
||
# Pi Tensor Products
|
||
|
||
The purpose of this file is to define some results about Pi tensor products not currently
|
||
in Mathlib.
|
||
|
||
At some point these should either be up-streamed to Mathlib or replaced with definitions already
|
||
in Mathlib.
|
||
|
||
-/
|
||
namespace HepLean.PiTensorProduct
|
||
|
||
noncomputable section tmulEquiv
|
||
|
||
variable {R ι1 ι2 ι3 M N : Type} [CommSemiring R]
|
||
{s1 : ι1 → Type} [inst1 : (i : ι1) → AddCommMonoid (s1 i)] [inst1' : (i : ι1) → Module R (s1 i)]
|
||
{s2 : ι2 → Type} [inst2 : (i : ι2) → AddCommMonoid (s2 i)] [inst2' : (i : ι2) → Module R (s2 i)]
|
||
{s3 : ι3 → Type} [inst3 : (i : ι3) → AddCommMonoid (s3 i)] [inst3' : (i : ι3) → Module R (s3 i)]
|
||
[AddCommMonoid M] [Module R M]
|
||
[AddCommMonoid N] [Module R N]
|
||
|
||
open TensorProduct
|
||
|
||
/-!
|
||
|
||
## induction principals for pi tensor products
|
||
|
||
-/
|
||
lemma induction_tmul {f g : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M}
|
||
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦
|
||
PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod] at hx hy
|
||
simp [map_add, tmul_add, hx, hy])
|
||
intro ry fy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
|
||
apply congrArg
|
||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||
exact congrArg (HSMul.hSMul rx) (h fx fy)
|
||
|
||
lemma induction_assoc
|
||
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
|
||
(h : ∀ p q m, f (PiTensorProduct.tprod R p ⊗ₜ[R]
|
||
PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)
|
||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q
|
||
⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦
|
||
PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
intro y
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod]
|
||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||
apply congrArg
|
||
let f' : ((⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M := {
|
||
toFun := fun y => f (PiTensorProduct.tprod R fx ⊗ₜ[R] y),
|
||
map_add' := fun y1 y2 => by
|
||
simp [tmul_add]
|
||
map_smul' := fun r y => by
|
||
simp [tmul_smul]}
|
||
let g' : ((⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M := {
|
||
toFun := fun y => g (PiTensorProduct.tprod R fx ⊗ₜ[R] y),
|
||
map_add' := fun y1 y2 => by
|
||
simp [tmul_add]
|
||
map_smul' := fun r y => by
|
||
simp [tmul_smul]}
|
||
change f' y = g' y
|
||
apply congrFun
|
||
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
|
||
apply induction_tmul
|
||
intro p q
|
||
exact h fx p q
|
||
|
||
lemma induction_assoc'
|
||
{f g : (((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i)) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
|
||
(h : ∀ p q m, f ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R]
|
||
PiTensorProduct.tprod R m) = g ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||
⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||
apply TensorProduct.ext'
|
||
intro x
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hy hx
|
||
simp [map_add, add_tmul, tmul_add, hy, hx])
|
||
intro ry fy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, map_smul]
|
||
apply congrArg
|
||
let f' : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M := {
|
||
toFun := fun y => f (y ⊗ₜ[R] PiTensorProduct.tprod R fy),
|
||
map_add' := fun y1 y2 => by
|
||
simp [add_tmul]
|
||
map_smul' := fun r y => by
|
||
simp [smul_tmul]}
|
||
let g' : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M := {
|
||
toFun := fun y => g (y ⊗ₜ[R] PiTensorProduct.tprod R fy),
|
||
map_add' := fun y1 y2 => by
|
||
simp [add_tmul]
|
||
map_smul' := fun r y => by
|
||
simp [smul_tmul]}
|
||
change f' x = g' x
|
||
apply congrFun
|
||
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
|
||
apply induction_tmul
|
||
intro p q
|
||
exact h p q fy
|
||
|
||
lemma induction_tmul_mod
|
||
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] N) →ₗ[R] M}
|
||
(h : ∀ p m, f (PiTensorProduct.tprod R p ⊗ₜ[R] m) = g (PiTensorProduct.tprod R p ⊗ₜ[R] m)) :
|
||
f = g := by
|
||
apply TensorProduct.ext'
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hy hx
|
||
simp [map_add, add_tmul, tmul_add, hy, hx])
|
||
intro ry fy
|
||
intro x
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, smul_tmul, tmul_smul, map_smul]
|
||
apply congrArg
|
||
exact h fy x
|
||
|
||
lemma induction_mod_tmul
|
||
{f g : (N ⊗[R] ⨂[R] i : ι1, s1 i) →ₗ[R] M}
|
||
(h : ∀ m p, f (m ⊗ₜ[R] PiTensorProduct.tprod R p) = g (m ⊗ₜ[R] PiTensorProduct.tprod R p)) :
|
||
f = g := by
|
||
apply TensorProduct.ext'
|
||
intro x
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hy hx
|
||
simp [map_add, add_tmul, tmul_add, hy, hx])
|
||
intro ry fy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, smul_tmul, tmul_smul, map_smul]
|
||
apply congrArg
|
||
exact h x fy
|
||
/-!
|
||
|
||
# Dependent type version of PiTensorProduct.tmulEquiv
|
||
-/
|
||
|
||
instance : (i : ι1 ⊕ ι2) → AddCommMonoid ((fun i => Sum.elim s1 s2 i) i) := fun i =>
|
||
match i with
|
||
| Sum.inl i => inst1 i
|
||
| Sum.inr i => inst2 i
|
||
|
||
instance : (i : ι1 ⊕ ι2) → Module R ((fun i => Sum.elim s1 s2 i) i) := fun i =>
|
||
match i with
|
||
| Sum.inl i => inst1' i
|
||
| Sum.inr i => inst2' i
|
||
|
||
/-- Takes a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` to the underlying map `(i : ι1) → s1 i `. -/
|
||
private def pureInl (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι1) → s1 i :=
|
||
fun i => f (Sum.inl i)
|
||
|
||
/-- Takes a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` to the underlying map `(i : ι2) → s2 i `. -/
|
||
private def pureInr (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι2) → s2 i :=
|
||
fun i => f (Sum.inr i)
|
||
|
||
section
|
||
|
||
variable [DecidableEq (ι1 ⊕ ι2)]
|
||
omit inst1 inst2
|
||
|
||
lemma pureInl_update_left [DecidableEq ι1] (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
|
||
(v1 : s1 x) : pureInl (Function.update f (Sum.inl x) v1) =
|
||
Function.update (pureInl f) x v1 := by
|
||
funext y
|
||
simp only [pureInl, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||
split
|
||
· rename_i h
|
||
subst h
|
||
rfl
|
||
· rfl
|
||
|
||
lemma pureInr_update_left (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
|
||
(v2 : s1 x) :
|
||
pureInr (Function.update f (Sum.inl x) v2) = (pureInr f) := by
|
||
funext y
|
||
simp [pureInr, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||
|
||
lemma pureInr_update_right [DecidableEq ι2] (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
|
||
(v2 : s2 x) : pureInr (Function.update f (Sum.inr x) v2) =
|
||
Function.update (pureInr f) x v2 := by
|
||
funext y
|
||
simp only [pureInr, Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||
split
|
||
· rename_i h
|
||
subst h
|
||
rfl
|
||
· rfl
|
||
|
||
lemma pureInl_update_right (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
|
||
(v1 : s2 x) :
|
||
pureInl (Function.update f (Sum.inr x) v1) = (pureInl f) := by
|
||
funext y
|
||
simp [pureInl, Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||
|
||
end
|
||
|
||
/-- The multilinear map from `(Sum.elim s1 s2)` to `((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i)`
|
||
defined by splitting elements of `(Sum.elim s1 s2)` into two parts. -/
|
||
def domCoprod :
|
||
MultilinearMap R (Sum.elim s1 s2) ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) where
|
||
toFun f := (PiTensorProduct.tprod R (pureInl f)) ⊗ₜ
|
||
(PiTensorProduct.tprod R (pureInr f))
|
||
map_add' f xy v1 v2 := by
|
||
haveI : DecidableEq (ι1 ⊕ ι2) := inferInstance
|
||
haveI : DecidableEq ι1 :=
|
||
@Function.Injective.decidableEq ι1 (ι1 ⊕ ι2) Sum.inl _ Sum.inl_injective
|
||
haveI : DecidableEq ι2 :=
|
||
@Function.Injective.decidableEq ι2 (ι1 ⊕ ι2) Sum.inr _ Sum.inr_injective
|
||
match xy with
|
||
| Sum.inl xy =>
|
||
simp only [Sum.elim_inl, pureInl_update_left, MultilinearMap.map_add, pureInr_update_left, ←
|
||
add_tmul]
|
||
| Sum.inr xy =>
|
||
simp only [Sum.elim_inr, pureInr_update_right, MultilinearMap.map_add, pureInl_update_right, ←
|
||
tmul_add]
|
||
map_smul' f xy r p := by
|
||
haveI : DecidableEq (ι1 ⊕ ι2) := inferInstance
|
||
haveI : DecidableEq ι1 :=
|
||
@Function.Injective.decidableEq ι1 (ι1 ⊕ ι2) Sum.inl _ Sum.inl_injective
|
||
haveI : DecidableEq ι2 :=
|
||
@Function.Injective.decidableEq ι2 (ι1 ⊕ ι2) Sum.inr _ Sum.inr_injective
|
||
match xy with
|
||
| Sum.inl x =>
|
||
simp only [Sum.elim_inl, pureInl_update_left, MultilinearMap.map_smul, pureInr_update_left,
|
||
smul_tmul, tmul_smul]
|
||
| Sum.inr y =>
|
||
simp only [Sum.elim_inr, pureInl_update_right, pureInr_update_right, MultilinearMap.map_smul,
|
||
tmul_smul]
|
||
|
||
/-- Expand `PiTensorProduct` on sums into a `TensorProduct` of two factors. -/
|
||
def tmulSymm : (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i) →ₗ[R]
|
||
((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) := PiTensorProduct.lift domCoprod
|
||
|
||
/-- Produces a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` from a map `(i : ι1) → s1 i` and a
|
||
map `q : (i : ι2) → s2 i`. -/
|
||
def elimPureTensor (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i :=
|
||
fun x =>
|
||
match x with
|
||
| Sum.inl x => p x
|
||
| Sum.inr x => q x
|
||
|
||
section
|
||
|
||
variable [DecidableEq ι1] [DecidableEq ι2]
|
||
omit inst1 inst2
|
||
|
||
lemma elimPureTensor_update_right (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i)
|
||
(y : ι2) (r : s2 y) : elimPureTensor p (Function.update q y r) =
|
||
Function.update (elimPureTensor p q) (Sum.inr y) r := by
|
||
funext x
|
||
match x with
|
||
| Sum.inl x =>
|
||
simp only [Sum.elim_inl, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
|
||
rfl
|
||
| Sum.inr x =>
|
||
change Function.update q y r x = _
|
||
simp only [Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||
split_ifs
|
||
· rename_i h
|
||
subst h
|
||
simp_all only
|
||
· rfl
|
||
|
||
@[simp]
|
||
lemma elimPureTensor_update_left (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i)
|
||
(x : ι1) (r : s1 x) : elimPureTensor (Function.update p x r) q =
|
||
Function.update (elimPureTensor p q) (Sum.inl x) r := by
|
||
funext y
|
||
match y with
|
||
| Sum.inl y =>
|
||
change (Function.update p x r) y = _
|
||
simp only [Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||
split_ifs
|
||
· rename_i h
|
||
subst h
|
||
rfl
|
||
· rfl
|
||
| Sum.inr y =>
|
||
simp only [Sum.elim_inr, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
|
||
rfl
|
||
|
||
end
|
||
|
||
/-- The multilinear map valued in multilinear maps defined by combining
|
||
`(i : ι1) → s1 i` and `q : (i : ι2) → s2 i` into a PiTensorProduct. -/
|
||
def elimPureTensorMulLin : MultilinearMap R s1
|
||
(MultilinearMap R s2 (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i)) where
|
||
toFun p := {
|
||
toFun := fun q => PiTensorProduct.tprod R (elimPureTensor p q)
|
||
map_add' := fun m x v1 v2 => by
|
||
haveI : DecidableEq ι2 := inferInstance
|
||
haveI := Classical.decEq ι1
|
||
simp only [elimPureTensor_update_right, MultilinearMap.map_add]
|
||
map_smul' := fun m x r v => by
|
||
haveI : DecidableEq ι2 := inferInstance
|
||
haveI := Classical.decEq ι1
|
||
simp only [elimPureTensor_update_right, MultilinearMap.map_smul]}
|
||
map_add' p x v1 v2 := by
|
||
haveI : DecidableEq ι1 := inferInstance
|
||
haveI := Classical.decEq ι2
|
||
apply MultilinearMap.ext
|
||
intro y
|
||
simp
|
||
map_smul' p x r v := by
|
||
haveI : DecidableEq ι1 := inferInstance
|
||
haveI := Classical.decEq ι2
|
||
apply MultilinearMap.ext
|
||
intro y
|
||
simp
|
||
|
||
/-- Collapse a `TensorProduct` of `PiTensorProduct` into a `PiTensorProduct`. -/
|
||
def tmul : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R]
|
||
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i := TensorProduct.lift {
|
||
toFun := fun a ↦
|
||
PiTensorProduct.lift <|
|
||
PiTensorProduct.lift (elimPureTensorMulLin) a,
|
||
map_add' := fun a b ↦ by simp
|
||
map_smul' := fun r a ↦ by simp}
|
||
|
||
/-- THe equivalence formed by combining a `TensorProduct` into a `PiTensorProduct`. -/
|
||
def tmulEquiv : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) ≃ₗ[R]
|
||
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i :=
|
||
LinearEquiv.ofLinear tmul tmulSymm
|
||
(by
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro p
|
||
simp only [tmul, tmulSymm, domCoprod, LinearMap.compMultilinearMap_apply,
|
||
LinearMap.coe_comp, Function.comp_apply, PiTensorProduct.lift.tprod, MultilinearMap.coe_mk,
|
||
lift.tmul, LinearMap.coe_mk, AddHom.coe_mk]
|
||
simp only [elimPureTensorMulLin, MultilinearMap.coe_mk, LinearMap.id_coe, id_eq]
|
||
apply congrArg
|
||
funext x
|
||
match x with
|
||
| Sum.inl x => rfl
|
||
| Sum.inr x => rfl)
|
||
(by
|
||
apply induction_tmul
|
||
intro p q
|
||
simp only [tmulSymm, domCoprod, tmul, elimPureTensorMulLin, LinearMap.coe_comp,
|
||
Function.comp_apply, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.coe_mk, LinearMap.id_coe, id_eq]
|
||
rfl)
|
||
|
||
@[simp]
|
||
lemma tmulEquiv_tmul_tprod (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) :
|
||
tmulEquiv ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) =
|
||
(PiTensorProduct.tprod R) (elimPureTensor p q) := by
|
||
simp only [tmulEquiv, tmul, elimPureTensorMulLin, LinearEquiv.ofLinear_apply, lift.tmul,
|
||
LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod, MultilinearMap.coe_mk]
|
||
|
||
end tmulEquiv
|
||
end HepLean.PiTensorProduct
|