172 lines
6.3 KiB
Text
172 lines
6.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||
import Mathlib.Algebra.Lie.Classical
|
||
/-!
|
||
|
||
# The Minkowski matrix
|
||
|
||
-/
|
||
|
||
open Matrix
|
||
open InnerProductSpace
|
||
/-!
|
||
|
||
# The definition of the Minkowski Matrix
|
||
|
||
-/
|
||
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
|
||
def minkowskiMatrix {d : ℕ} : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ :=
|
||
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d) ℝ
|
||
|
||
namespace minkowskiMatrix
|
||
|
||
variable {d : ℕ}
|
||
|
||
/-- Notation for `minkowskiMatrix`. -/
|
||
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
|
||
|
||
/-- The Minkowski matrix is self-inverting. -/
|
||
@[simp]
|
||
lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
|
||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_mul_diagonal]
|
||
ext1 i j
|
||
rcases i with i | i <;> rcases j with j | j
|
||
· simp only [diagonal, of_apply, Sum.inl.injEq, Sum.elim_inl, mul_one]
|
||
split
|
||
· rename_i h
|
||
subst h
|
||
simp_all only [one_apply_eq]
|
||
· simp_all only [ne_eq, Sum.inl.injEq, not_false_eq_true, one_apply_ne]
|
||
· rfl
|
||
· rfl
|
||
· simp only [diagonal, of_apply, Sum.inr.injEq, Sum.elim_inr, mul_neg, mul_one, neg_neg]
|
||
split
|
||
· rename_i h
|
||
subst h
|
||
simp_all only [one_apply_eq]
|
||
· simp_all only [ne_eq, Sum.inr.injEq, not_false_eq_true, one_apply_ne]
|
||
|
||
/-- The Minkowski matrix is symmetric. -/
|
||
@[simp]
|
||
lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by
|
||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose]
|
||
|
||
/-- The determinant of the Minkowski matrix is equal to `-1` to the power
|
||
of the number of spatial dimensions. -/
|
||
@[simp]
|
||
lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by
|
||
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||
|
||
/-- Multiplying any element on the diagonal of the Minkowski matrix by itself gives `1`. -/
|
||
@[simp]
|
||
lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ = 1 := by
|
||
match μ with
|
||
| Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||
| Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||
|
||
/-- The Minkowski matrix as a block matrix. -/
|
||
lemma as_block : @minkowskiMatrix d =
|
||
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin d) (Fin d) ℝ) := by
|
||
rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal]
|
||
refine fromBlocks_inj.mpr ?_
|
||
simp only [diagonal_one, true_and]
|
||
funext i j
|
||
rw [← diagonal_neg]
|
||
rfl
|
||
|
||
/-- The off diagonal elements of the Minkowski matrix are zero. -/
|
||
@[simp]
|
||
lemma off_diag_zero {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) : η μ ν = 0 := by
|
||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||
exact diagonal_apply_ne _ h
|
||
|
||
/-- The `time-time` component of the Minkowski matrix is `1`. -/
|
||
lemma inl_0_inl_0 : @minkowskiMatrix d (Sum.inl 0) (Sum.inl 0) = 1 := by
|
||
rfl
|
||
|
||
/-- The space diagonal components of the Minkowski matrix are `-1`. -/
|
||
lemma inr_i_inr_i (i : Fin d) : @minkowskiMatrix d (Sum.inr i) (Sum.inr i) = -1 := by
|
||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||
simp_all only [diagonal_apply_eq, Sum.elim_inr]
|
||
|
||
/-- The time components of a vector acted on by the Minkowski matrix remains unchanged. -/
|
||
@[simp]
|
||
lemma mulVec_inl_0 (v : (Fin 1 ⊕ Fin d) → ℝ) :
|
||
(η *ᵥ v) (Sum.inl 0)= v (Sum.inl 0) := by
|
||
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
|
||
simp only [Fin.isValue, diagonal_dotProduct, Sum.elim_inl, one_mul]
|
||
|
||
/-- The space components of a vector acted on by the Minkowski matrix swaps sign. -/
|
||
@[simp]
|
||
lemma mulVec_inr_i (v : (Fin 1 ⊕ Fin d) → ℝ) (i : Fin d) :
|
||
(η *ᵥ v) (Sum.inr i)= - v (Sum.inr i) := by
|
||
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
|
||
simp only [diagonal_dotProduct, Sum.elim_inr, neg_mul, one_mul]
|
||
|
||
variable (Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
|
||
|
||
/-- The dual of a matrix with respect to the Minkowski metric.
|
||
A suitable name fo this construction is the Minkowski dual. -/
|
||
def dual : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ := η * Λᵀ * η
|
||
|
||
/-- The Minkowski dual of the identity is the identity. -/
|
||
@[simp]
|
||
lemma dual_id : @dual d 1 = 1 := by
|
||
simpa only [dual, transpose_one, mul_one] using minkowskiMatrix.sq
|
||
|
||
/-- The Minkowski dual swaps multiplications (acts contravariantly). -/
|
||
@[simp]
|
||
lemma dual_mul : dual (Λ * Λ') = dual Λ' * dual Λ := by
|
||
simp only [dual, transpose_mul]
|
||
trans η * Λ'ᵀ * (η * η) * Λᵀ * η
|
||
· noncomm_ring [minkowskiMatrix.sq]
|
||
· noncomm_ring
|
||
|
||
/-- The Minkowski dual is involutive (i.e. `dual (dual Λ)) = Λ`). -/
|
||
@[simp]
|
||
lemma dual_dual : Function.Involutive (@dual d) := by
|
||
intro Λ
|
||
simp only [dual, transpose_mul, transpose_transpose, eq_transpose]
|
||
trans (η * η) * Λ * (η * η)
|
||
· noncomm_ring
|
||
· noncomm_ring [minkowskiMatrix.sq]
|
||
|
||
/-- The Minkowski dual preserves the Minkowski matrix. -/
|
||
@[simp]
|
||
lemma dual_eta : @dual d η = η := by
|
||
simp only [dual, eq_transpose]
|
||
noncomm_ring [minkowskiMatrix.sq]
|
||
|
||
/-- The Minkowski dual commutes with the transpose. -/
|
||
@[simp]
|
||
lemma dual_transpose : dual Λᵀ = (dual Λ)ᵀ := by
|
||
simp only [dual, transpose_transpose, transpose_mul, eq_transpose]
|
||
noncomm_ring
|
||
|
||
/-- The Minkowski dual preserves determinants. -/
|
||
@[simp]
|
||
lemma det_dual : (dual Λ).det = Λ.det := by
|
||
simp only [dual, det_mul, minkowskiMatrix.det_eq_neg_one_pow_d, det_transpose]
|
||
group
|
||
norm_cast
|
||
simp
|
||
|
||
/-- Expansion of the components of the Minkowski dual in terms of the components
|
||
of the original matrix. -/
|
||
lemma dual_apply (μ ν : Fin 1 ⊕ Fin d) :
|
||
dual Λ μ ν = η μ μ * Λ ν μ * η ν ν := by
|
||
simp only [dual, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
|
||
diagonal_mul, transpose_apply, diagonal_apply_eq]
|
||
|
||
/-- The components of the Minkowski dual of a matrix multiplied by the Minkowski matrix
|
||
in terms of the original matrix. -/
|
||
lemma dual_apply_minkowskiMatrix (μ ν : Fin 1 ⊕ Fin d) :
|
||
dual Λ μ ν * η ν ν = η μ μ * Λ ν μ := by
|
||
rw [dual_apply, mul_assoc]
|
||
simp
|
||
|
||
end minkowskiMatrix
|