PhysLean/HepLean/Lorentz/RealVector/Modules.lean
2025-02-10 10:59:09 +00:00

422 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Lorentz.PauliMatrices.SelfAdjoint
/-!
## Modules associated with Real Lorentz vectors
We define the modules underlying real Lorentz vectors.
These definitions are preludes to the definitions of
`Lorentz.contr` and `Lorentz.co`.
-/
namespace Lorentz
noncomputable section
open Matrix
open MatrixGroups
open Complex
/-- The module for contravariant (up-index) real Lorentz vectors. -/
structure ContrMod (d : ) where
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → `. -/
val : Fin 1 ⊕ Fin d →
namespace ContrMod
variable {d : }
@[ext]
lemma ext {ψ ψ' : ContrMod d} (h : ψ.val = ψ'.val) : ψ = ψ' := by
cases ψ
cases ψ'
subst h
rfl
/-- The equivalence between `ContrModule` and `Fin 1 ⊕ Fin d → `. -/
def toFin1dFun : ContrMod d ≃ (Fin 1 ⊕ Fin d → ) where
toFun v := v.val
invFun f := ⟨f⟩
left_inv _ := rfl
right_inv _ := rfl
/-- The instance of `AddCommMonoid` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : AddCommMonoid (ContrMod d) := Equiv.addCommMonoid toFin1dFun
/-- The instance of `AddCommGroup` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : AddCommGroup (ContrMod d) := Equiv.addCommGroup toFin1dFun
/-- The instance of `Module` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : Module (ContrMod d) := Equiv.module toFin1dFun
@[simp]
lemma val_add (ψ ψ' : ContrMod d) : (ψ + ψ').val = ψ.val + ψ'.val := rfl
@[simp]
lemma val_smul (r : ) (ψ : ContrMod d) : (r • ψ).val = r • ψ.val := rfl
/-- The linear equivalence between `ContrModule` and `(Fin 1 ⊕ Fin d → )`. -/
def toFin1dEquiv : ContrMod d ≃ₗ[] (Fin 1 ⊕ Fin d → ) :=
Equiv.linearEquiv toFin1dFun
/-- The underlying element of `Fin 1 ⊕ Fin d → ` of a element in `ContrModule` defined
through the linear equivalence `toFin1dEquiv`. -/
abbrev toFin1d (ψ : ContrMod d) := toFin1dEquiv ψ
lemma toFin1d_eq_val (ψ : ContrMod d) : ψ.toFin1d = ψ.val := by rfl
/-!
## The standard basis.
-/
/-- The standard basis of `ContrModule` indexed by `Fin 1 ⊕ Fin d`. -/
@[simps!]
def stdBasis : Basis (Fin 1 ⊕ Fin d) (ContrMod d) := Basis.ofEquivFun toFin1dEquiv
@[simp]
lemma stdBasis_toFin1dEquiv_apply_same (μ : Fin 1 ⊕ Fin d) :
toFin1dEquiv (stdBasis μ) μ = 1 := by
simp only [stdBasis, Basis.ofEquivFun, Basis.coe_ofRepr, LinearEquiv.trans_symm,
LinearEquiv.symm_symm, LinearEquiv.trans_apply, Finsupp.linearEquivFunOnFinite_single]
rw [@LinearEquiv.apply_symm_apply]
exact Pi.single_eq_same μ 1
@[simp]
lemma stdBasis_apply_same (μ : Fin 1 ⊕ Fin d) : (stdBasis μ).val μ = 1 :=
stdBasis_toFin1dEquiv_apply_same μ
lemma stdBasis_toFin1dEquiv_apply_ne {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) :
toFin1dEquiv (stdBasis μ) ν = 0 := by
simp only [stdBasis, Basis.ofEquivFun, Basis.coe_ofRepr, LinearEquiv.trans_symm,
LinearEquiv.symm_symm, LinearEquiv.trans_apply, Finsupp.linearEquivFunOnFinite_single]
rw [@LinearEquiv.apply_symm_apply]
exact Pi.single_eq_of_ne' h 1
@[simp]
lemma stdBasis_inl_apply_inr (i : Fin d) : (stdBasis (Sum.inl 0)).val (Sum.inr i) = 0 := by
refine stdBasis_toFin1dEquiv_apply_ne ?_
simp
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ = ν then 1 else 0 := by
simp only [stdBasis, Basis.coe_ofEquivFun]
change Pi.single μ 1 ν = _
simp only [Pi.single_apply]
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)
/-- Decomposition of a contravariant Lorentz vector into the standard basis. -/
lemma stdBasis_decomp (v : ContrMod d) : v = ∑ i, v.toFin1d i • stdBasis i := by
apply toFin1dEquiv.injective
simp only [map_sum, _root_.map_smul]
funext μ
rw [Fintype.sum_apply μ fun c => toFin1dEquiv v c • toFin1dEquiv (stdBasis c)]
change _ = ∑ x : Fin 1 ⊕ Fin d, toFin1dEquiv v x • (toFin1dEquiv (stdBasis x) μ)
rw [Finset.sum_eq_single_of_mem μ (Finset.mem_univ μ)]
· simp only [stdBasis_toFin1dEquiv_apply_same, smul_eq_mul, mul_one]
· intro b _ hbμ
rw [stdBasis_toFin1dEquiv_apply_ne hbμ]
simp only [smul_eq_mul, mul_zero]
/-!
## mulVec
-/
/-- Multiplication of a matrix with a vector in `ContrMod`. -/
abbrev mulVec (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : ContrMod d) :
ContrMod d := Matrix.toLinAlgEquiv stdBasis M v
/-- Multiplication of a matrix with a vector in `ContrMod`. -/
scoped[Lorentz] infixr:73 " *ᵥ " => ContrMod.mulVec
@[simp]
lemma mulVec_toFin1d (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : ContrMod d) :
(M *ᵥ v).toFin1d = M *ᵥ v.toFin1d := by
rfl
lemma mulVec_sub (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v w : ContrMod d) :
M *ᵥ (v - w) = M *ᵥ v - M *ᵥ w := by
simp only [mulVec, LinearMap.map_sub]
lemma sub_mulVec (M N : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : ContrMod d) :
(M - N) *ᵥ v = M *ᵥ v - N *ᵥ v := by
simp only [mulVec, map_sub, LinearMap.sub_apply]
lemma mulVec_add (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v w : ContrMod d) :
M *ᵥ (v + w) = M *ᵥ v + M *ᵥ w := by
simp only [mulVec, LinearMap.map_add]
@[simp]
lemma one_mulVec (v : ContrMod d) : (1 : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) *ᵥ v = v := by
simp only [mulVec, _root_.map_one, LinearMap.one_apply]
lemma mulVec_mulVec (M N : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : ContrMod d) :
M *ᵥ (N *ᵥ v) = (M * N) *ᵥ v := by
simp only [mulVec, _root_.map_mul, LinearMap.mul_apply]
/-!
## The norm
(Not the Minkowski norm, but the norm of a vector in `ContrModule d`.)
-/
/-- A `NormedAddCommGroup` structure on `ContrMod`. This is not an instance, as we
don't want it to be applied always. -/
def norm : NormedAddCommGroup (ContrMod d) where
norm v := ‖v.val‖₊
dist_self x := Pi.normedAddCommGroup.dist_self x.val
dist_triangle x y z := Pi.normedAddCommGroup.dist_triangle x.val y.val z.val
dist_comm x y := Pi.normedAddCommGroup.dist_comm x.val y.val
eq_of_dist_eq_zero {x y} := fun h => ext (MetricSpace.eq_of_dist_eq_zero h)
/-- The underlying space part of a `ContrMod` formed by removing the first element.
A better name for this might be `tail`. -/
def toSpace (v : ContrMod d) : EuclideanSpace (Fin d) := v.val ∘ Sum.inr
/-!
## The representation.
-/
/-- The representation of the Lorentz group acting on `ContrModule d`. -/
def rep : Representation (LorentzGroup d) (ContrMod d) where
toFun g := Matrix.toLinAlgEquiv stdBasis g
map_one' := EmbeddingLike.map_eq_one_iff.mpr rfl
map_mul' x y := by
simp only [lorentzGroupIsGroup_mul_coe, _root_.map_mul]
lemma rep_apply_toFin1d (g : LorentzGroup d) (ψ : ContrMod d) :
(rep g ψ).toFin1d = g.1 *ᵥ ψ.toFin1d := by
rfl
/-!
## To Self-Adjoint Matrix
-/
/-- The linear equivalence between the vector-space `ContrMod 3` and self-adjoint
`2×2`-complex matrices. -/
def toSelfAdjoint : ContrMod 3 ≃ₗ[] selfAdjoint (Matrix (Fin 2) (Fin 2) ) :=
toFin1dEquiv ≪≫ₗ (Finsupp.linearEquivFunOnFinite (Fin 1 ⊕ Fin 3)).symm ≪≫ₗ
PauliMatrix.σSAL.repr.symm
lemma toSelfAdjoint_apply (x : ContrMod 3) : toSelfAdjoint x =
x.toFin1d (Sum.inl 0) • ⟨PauliMatrix.σ0, PauliMatrix.σ0_selfAdjoint⟩
- x.toFin1d (Sum.inr 0) • ⟨PauliMatrix.σ1, PauliMatrix.σ1_selfAdjoint⟩
- x.toFin1d (Sum.inr 1) • ⟨PauliMatrix.σ2, PauliMatrix.σ2_selfAdjoint⟩
- x.toFin1d (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by
simp only [toSelfAdjoint, PauliMatrix.σSAL, LinearEquiv.trans_apply, Basis.repr_symm_apply,
Basis.coe_mk, Fin.isValue]
rw [Finsupp.linearCombination_apply_of_mem_supported (s := Finset.univ)]
· change (∑ i : Fin 1 ⊕ Fin 3, x.toFin1d i • PauliMatrix.σSAL' i) = _
simp only [PauliMatrix.σSAL', Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero,
Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three]
apply Subtype.ext
simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg,
AddSubgroupClass.coe_sub]
simp only [neg_add, add_assoc, sub_eq_add_neg]
· simp_all only [Finset.coe_univ, Finsupp.supported_univ, Submodule.mem_top]
lemma toSelfAdjoint_apply_coe (x : ContrMod 3) : (toSelfAdjoint x).1 =
x.toFin1d (Sum.inl 0) • PauliMatrix.σ0
- x.toFin1d (Sum.inr 0) • PauliMatrix.σ1
- x.toFin1d (Sum.inr 1) • PauliMatrix.σ2
- x.toFin1d (Sum.inr 2) • PauliMatrix.σ3 := by
rw [toSelfAdjoint_apply]
rfl
lemma toSelfAdjoint_stdBasis (i : Fin 1 ⊕ Fin 3) :
toSelfAdjoint (stdBasis i) = PauliMatrix.σSAL i := by
rw [toSelfAdjoint_apply]
match i with
| Sum.inl 0 =>
simp only [stdBasis, Fin.isValue, Basis.coe_ofEquivFun, LinearEquiv.apply_symm_apply,
Pi.single_eq_same, one_smul, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne,
zero_smul, sub_zero, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
| Sum.inr 0 =>
simp only [stdBasis, Fin.isValue, Basis.coe_ofEquivFun, LinearEquiv.apply_symm_apply, ne_eq,
reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Pi.single_eq_same, one_smul,
zero_sub, Sum.inr.injEq, one_ne_zero, sub_zero, Fin.reduceEq, PauliMatrix.σSAL, Basis.coe_mk,
PauliMatrix.σSAL']
rfl
| Sum.inr 1 =>
simp only [stdBasis, Fin.isValue, Basis.coe_ofEquivFun, LinearEquiv.apply_symm_apply, ne_eq,
reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Sum.inr.injEq, zero_ne_one,
sub_self, Pi.single_eq_same, one_smul, zero_sub, Fin.reduceEq, sub_zero, PauliMatrix.σSAL,
Basis.coe_mk, PauliMatrix.σSAL']
rfl
| Sum.inr 2 =>
simp only [stdBasis, Fin.isValue, Basis.coe_ofEquivFun, LinearEquiv.apply_symm_apply, ne_eq,
reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Sum.inr.injEq, Fin.reduceEq,
sub_self, Pi.single_eq_same, one_smul, zero_sub, PauliMatrix.σSAL, Basis.coe_mk,
PauliMatrix.σSAL']
rfl
@[simp]
lemma toSelfAdjoint_symm_basis (i : Fin 1 ⊕ Fin 3) :
toSelfAdjoint.symm (PauliMatrix.σSAL i) = (stdBasis i) := by
refine (LinearEquiv.symm_apply_eq toSelfAdjoint).mpr ?_
rw [toSelfAdjoint_stdBasis]
/-!
## Topology
-/
/-- The type `ContrMod d` carries an instance of a topological group, induced by
it's equivalence to `Fin 1 ⊕ Fin d → `. -/
instance : TopologicalSpace (ContrMod d) := TopologicalSpace.induced
ContrMod.toFin1dEquiv (Pi.topologicalSpace)
open Topology
lemma toFin1dEquiv_isInducing : IsInducing (@ContrMod.toFin1dEquiv d) := by
exact { eq_induced := rfl }
lemma toFin1dEquiv_symm_isInducing : IsInducing ((@ContrMod.toFin1dEquiv d).symm) := by
let x := Equiv.toHomeomorphOfIsInducing (@ContrMod.toFin1dEquiv d).toEquiv
toFin1dEquiv_isInducing
exact Homeomorph.isInducing x.symm
end ContrMod
/-- The module for covariant (up-index) complex Lorentz vectors. -/
structure CoMod (d : ) where
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → `. -/
val : Fin 1 ⊕ Fin d →
namespace CoMod
variable {d : }
@[ext]
lemma ext {ψ ψ' : CoMod d} (h : ψ.val = ψ'.val) : ψ = ψ' := by
cases ψ
cases ψ'
subst h
rfl
/-- The equivalence between `CoModule` and `Fin 1 ⊕ Fin d → `. -/
def toFin1dFun : CoMod d ≃ (Fin 1 ⊕ Fin d → ) where
toFun v := v.val
invFun f := ⟨f⟩
left_inv _ := rfl
right_inv _ := rfl
/-- The instance of `AddCommMonoid` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : AddCommMonoid (CoMod d) := Equiv.addCommMonoid toFin1dFun
/-- The instance of `AddCommGroup` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : AddCommGroup (CoMod d) := Equiv.addCommGroup toFin1dFun
/-- The instance of `Module` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin d → `. -/
instance : Module (CoMod d) := Equiv.module toFin1dFun
/-- The linear equivalence between `CoModule` and `(Fin 1 ⊕ Fin d → )`. -/
def toFin1dEquiv : CoMod d ≃ₗ[] (Fin 1 ⊕ Fin d → ) :=
Equiv.linearEquiv toFin1dFun
/-- The underlying element of `Fin 1 ⊕ Fin d → ` of a element in `CoModule` defined
through the linear equivalence `toFin1dEquiv`. -/
abbrev toFin1d (ψ : CoMod d) := toFin1dEquiv ψ
/-!
## The standard basis.
-/
/-- The standard basis of `CoModule` indexed by `Fin 1 ⊕ Fin d`. -/
@[simps!]
def stdBasis : Basis (Fin 1 ⊕ Fin d) (CoMod d) := Basis.ofEquivFun toFin1dEquiv
@[simp]
lemma stdBasis_toFin1dEquiv_apply_same (μ : Fin 1 ⊕ Fin d) :
toFin1dEquiv (stdBasis μ) μ = 1 := by
simp only [stdBasis, Basis.ofEquivFun, Basis.coe_ofRepr, LinearEquiv.trans_symm,
LinearEquiv.symm_symm, LinearEquiv.trans_apply, Finsupp.linearEquivFunOnFinite_single]
rw [@LinearEquiv.apply_symm_apply]
exact Pi.single_eq_same μ 1
@[simp]
lemma stdBasis_apply_same (μ : Fin 1 ⊕ Fin d) : (stdBasis μ).val μ = 1 :=
stdBasis_toFin1dEquiv_apply_same μ
lemma stdBasis_toFin1dEquiv_apply_ne {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) :
toFin1dEquiv (stdBasis μ) ν = 0 := by
simp only [stdBasis, Basis.ofEquivFun, Basis.coe_ofRepr, LinearEquiv.trans_symm,
LinearEquiv.symm_symm, LinearEquiv.trans_apply, Finsupp.linearEquivFunOnFinite_single]
rw [@LinearEquiv.apply_symm_apply]
exact Pi.single_eq_of_ne' h 1
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ = ν then 1 else 0 := by
simp only [stdBasis, Basis.coe_ofEquivFun]
change Pi.single μ 1 ν = _
simp only [Pi.single_apply]
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)
/-- Decomposition of a covariant Lorentz vector into the standard basis. -/
lemma stdBasis_decomp (v : CoMod d) : v = ∑ i, v.toFin1d i • stdBasis i := by
apply toFin1dEquiv.injective
simp only [map_sum, _root_.map_smul]
funext μ
rw [Fintype.sum_apply μ fun c => toFin1dEquiv v c • toFin1dEquiv (stdBasis c)]
change _ = ∑ x : Fin 1 ⊕ Fin d, toFin1dEquiv v x • (toFin1dEquiv (stdBasis x) μ)
rw [Finset.sum_eq_single_of_mem μ (Finset.mem_univ μ)]
· simp only [stdBasis_toFin1dEquiv_apply_same, smul_eq_mul, mul_one]
· intro b _ hbμ
rw [stdBasis_toFin1dEquiv_apply_ne hbμ]
simp only [smul_eq_mul, mul_zero]
/-!
## mulVec
-/
/-- Multiplication of a matrix with a vector in `CoMod`. -/
abbrev mulVec (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : CoMod d) :
CoMod d := Matrix.toLinAlgEquiv stdBasis M v
/-- Multiplication of a matrix with a vector in `CoMod`. -/
scoped[Lorentz] infixr:73 " *ᵥ " => CoMod.mulVec
@[simp]
lemma mulVec_toFin1d (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) (v : CoMod d) :
(M *ᵥ v).toFin1d = M *ᵥ v.toFin1d := by
rfl
/-!
## The representation
-/
/-- The representation of the Lorentz group acting on `CoModule d`. -/
def rep : Representation (LorentzGroup d) (CoMod d) where
toFun g := Matrix.toLinAlgEquiv stdBasis (LorentzGroup.transpose g⁻¹)
map_one' := by
simp only [inv_one, LorentzGroup.transpose_one, lorentzGroupIsGroup_one_coe, _root_.map_one]
map_mul' x y := by
simp only [_root_.mul_inv_rev, lorentzGroupIsGroup_inv, LorentzGroup.transpose_mul,
lorentzGroupIsGroup_mul_coe, _root_.map_mul]
end CoMod
end
end Lorentz