99 lines
3.9 KiB
Text
99 lines
3.9 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldOpAlgebra.Basic
|
||
/-!
|
||
|
||
# Universality properties of FieldOpAlgebra
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
open FieldOpFreeAlgebra
|
||
open HepLean.List
|
||
open FieldStatistic
|
||
|
||
namespace FieldOpAlgebra
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
|
||
such that the lift of `f` to `FreeAlgebra.lift ℂ f : FreeAlgebra ℂ 𝓕.CrAnFieldOp → A` is
|
||
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding map `𝓕.FieldOpAlgebra → A`.
|
||
-/
|
||
def universalLiftMap {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||
FieldOpAlgebra 𝓕 → A :=
|
||
Quotient.lift (FreeAlgebra.lift ℂ f) (by
|
||
intro a b h
|
||
rw [equiv_iff_exists_add] at h
|
||
obtain ⟨a, rfl, ha⟩ := h
|
||
simp only [map_add]
|
||
rw [h1 a ha]
|
||
simp)
|
||
|
||
@[simp]
|
||
lemma universalLiftMap_ι {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||
universalLiftMap f h1 (ι a) = FreeAlgebra.lift ℂ f a := by rfl
|
||
|
||
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
|
||
such that the lift of `f` to `FreeAlgebra.lift ℂ f : FreeAlgebra ℂ 𝓕.CrAnFieldOp → A` is
|
||
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding algebra map
|
||
`𝓕.FieldOpAlgebra → A`.
|
||
-/
|
||
def universalLift {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||
FieldOpAlgebra 𝓕 →ₐ[ℂ] A where
|
||
toFun := universalLiftMap f h1
|
||
map_one' := by
|
||
rw [show 1 = ι (𝓕 := 𝓕) 1 from rfl, universalLiftMap_ι]
|
||
simp
|
||
map_mul' x y := by
|
||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||
simp [← map_mul]
|
||
map_zero' := by
|
||
simp only
|
||
rw [show 0 = ι (𝓕 := 𝓕) 0 from rfl, universalLiftMap_ι]
|
||
simp
|
||
map_add' x y := by
|
||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||
simp [← map_add]
|
||
commutes' r := by
|
||
simp only
|
||
rw [Algebra.algebraMap_eq_smul_one r]
|
||
rw [show r • 1 = ι (𝓕 := 𝓕) (r • 1) from rfl, universalLiftMap_ι]
|
||
simp only [map_smul, map_one]
|
||
exact Eq.symm (Algebra.algebraMap_eq_smul_one r)
|
||
|
||
@[simp]
|
||
lemma universalLift_ι {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||
universalLift f h1 (ι a) = FreeAlgebra.lift ℂ f a := by rfl
|
||
|
||
/--
|
||
For a field specification, `𝓕`, the algebra `𝓕.FieldOpAlgebra` satisfies the following universal
|
||
property. Let `f : 𝓕.CrAnFieldOp → A` be a function and `g : 𝓕.FieldOpFreeAlgebra →ₐ[ℂ] A`
|
||
the universal lift of that function associated with the free algebra `𝓕.FieldOpFreeAlgebra`.
|
||
If `g` is zero on the ideal defining `𝓕.FieldOpAlgebra`, then there exists
|
||
algebra map `g' : FieldOpAlgebra 𝓕 →ₐ[ℂ] A` such that `g' ∘ ι = g`, and furthermore this
|
||
algebra map is unique.
|
||
-/
|
||
lemma universality {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||
∃! g : FieldOpAlgebra 𝓕 →ₐ[ℂ] A, g ∘ ι = FreeAlgebra.lift ℂ f := by
|
||
use universalLift f h1
|
||
simp only
|
||
apply And.intro
|
||
· ext a
|
||
simp
|
||
· intro g hg
|
||
ext a
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
simpa using congrFun hg a
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|