96 lines
2.5 KiB
Text
96 lines
2.5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.FeynmanDiagrams.Momentum
|
||
/-!
|
||
# Feynman diagrams in Phi^4 theory
|
||
|
||
The aim of this file is to start building up the theory of Feynman diagrams in the context of
|
||
Phi^4 theory.
|
||
|
||
|
||
-/
|
||
|
||
|
||
namespace PhiFour
|
||
open CategoryTheory
|
||
open FeynmanDiagram
|
||
open PreFeynmanRule
|
||
|
||
/-- The pre-Feynman rules for `Phi^4` theory. -/
|
||
@[simps!]
|
||
def phi4PreFeynmanRules : PreFeynmanRule where
|
||
/- There is only 1 type of `half-edge`. -/
|
||
HalfEdgeLabel := Fin 1
|
||
/- There is only 1 type of `edge`. -/
|
||
EdgeLabel := Fin 1
|
||
/- There are two types of `vertex`, external `0` and internal `1`. -/
|
||
VertexLabel := Fin 2
|
||
edgeLabelMap x :=
|
||
match x with
|
||
| 0 => Over.mk ![0, 0]
|
||
vertexLabelMap x :=
|
||
match x with
|
||
| 0 => Over.mk ![0]
|
||
| 1 => Over.mk ![0, 0, 0, 0]
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.EdgeLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.VertexLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
|
||
instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
|
||
edgeLabelDecidable := instDecidableEqFin _
|
||
vertexLabelDecidable := instDecidableEqFin _
|
||
halfEdgeLabelDecidable := instDecidableEqFin _
|
||
vertexMapFintype := fun v =>
|
||
match v with
|
||
| 0 => Fin.fintype _
|
||
| 1 => Fin.fintype _
|
||
edgeMapFintype := fun v =>
|
||
match v with
|
||
| 0 => Fin.fintype _
|
||
vertexMapDecidable := fun v =>
|
||
match v with
|
||
| 0 => instDecidableEqFin _
|
||
| 1 => instDecidableEqFin _
|
||
edgeMapDecidable := fun v =>
|
||
match v with
|
||
| 0 => instDecidableEqFin _
|
||
|
||
/-!
|
||
|
||
## The figure eight diagram
|
||
|
||
This section provides an example of the use of Feynman diagrams in HepLean.
|
||
|
||
-/
|
||
section Example
|
||
|
||
/-- The figure eight Feynman diagram. -/
|
||
abbrev figureEight : FeynmanDiagram phi4PreFeynmanRules :=
|
||
mk'
|
||
![0, 0] -- edges
|
||
![1] -- one internal vertex
|
||
![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] -- four half-edges
|
||
(by decide) -- the condition to form a Feynman diagram.
|
||
|
||
/-- `figureEight` is connected. We can get this from
|
||
`#eval Connected figureEight`. -/
|
||
lemma figureEight_connected : Connected figureEight := by decide
|
||
|
||
/-- The symmetry factor of `figureEight` is 8. We can get this from
|
||
`#eval symmetryFactor figureEight`. -/
|
||
lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by decide
|
||
|
||
end Example
|
||
|
||
|
||
end PhiFour
|