PhysLean/HepLean/FeynmanDiagrams/Instances/Phi4.lean
2024-06-19 13:07:37 -04:00

96 lines
2.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Momentum
/-!
# Feynman diagrams in Phi^4 theory
The aim of this file is to start building up the theory of Feynman diagrams in the context of
Phi^4 theory.
-/
namespace PhiFour
open CategoryTheory
open FeynmanDiagram
open PreFeynmanRule
/-- The pre-Feynman rules for `Phi^4` theory. -/
@[simps!]
def phi4PreFeynmanRules : PreFeynmanRule where
/- There is only 1 type of `half-edge`. -/
HalfEdgeLabel := Fin 1
/- There is only 1 type of `edge`. -/
EdgeLabel := Fin 1
/- There are two types of `vertex`, external `0` and internal `1`. -/
VertexLabel := Fin 2
edgeLabelMap x :=
match x with
| 0 => Over.mk ![0, 0]
vertexLabelMap x :=
match x with
| 0 => Over.mk ![0]
| 1 => Over.mk ![0, 0, 0, 0]
instance (a : ) : OfNat phi4PreFeynmanRules.EdgeLabel a where
ofNat := (a : Fin _)
instance (a : ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where
ofNat := (a : Fin _)
instance (a : ) : OfNat phi4PreFeynmanRules.VertexLabel a where
ofNat := (a : Fin _)
instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
edgeLabelDecidable := instDecidableEqFin _
vertexLabelDecidable := instDecidableEqFin _
halfEdgeLabelDecidable := instDecidableEqFin _
vertexMapFintype := fun v =>
match v with
| 0 => Fin.fintype _
| 1 => Fin.fintype _
edgeMapFintype := fun v =>
match v with
| 0 => Fin.fintype _
vertexMapDecidable := fun v =>
match v with
| 0 => instDecidableEqFin _
| 1 => instDecidableEqFin _
edgeMapDecidable := fun v =>
match v with
| 0 => instDecidableEqFin _
/-!
## The figure eight diagram
This section provides an example of the use of Feynman diagrams in HepLean.
-/
section Example
/-- The figure eight Feynman diagram. -/
abbrev figureEight : FeynmanDiagram phi4PreFeynmanRules :=
mk'
![0, 0] -- edges
![1] -- one internal vertex
![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] -- four half-edges
(by decide) -- the condition to form a Feynman diagram.
/-- `figureEight` is connected. We can get this from
`#eval Connected figureEight`. -/
lemma figureEight_connected : Connected figureEight := by decide
/-- The symmetry factor of `figureEight` is 8. We can get this from
`#eval symmetryFactor figureEight`. -/
lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by decide
end Example
end PhiFour