198 lines
7.8 KiB
Text
198 lines
7.8 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.ColorCat.Basic
|
||
/-!
|
||
|
||
## Monodial functor from color cat.
|
||
|
||
-/
|
||
namespace Fermion
|
||
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
|
||
/-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/
|
||
inductive Color
|
||
| upL : Color
|
||
| downL : Color
|
||
| upR : Color
|
||
| downR : Color
|
||
| up : Color
|
||
| down : Color
|
||
|
||
/-- The corresponding representations associated with a color. -/
|
||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||
match c with
|
||
| Color.upL => altLeftHanded
|
||
| Color.downL => leftHanded
|
||
| Color.upR => altRightHanded
|
||
| Color.downR => rightHanded
|
||
| Color.up => Lorentz.complexContr
|
||
| Color.down => Lorentz.complexCo
|
||
|
||
/-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/
|
||
def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[ℂ] colorToRep c2 where
|
||
toFun := Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)
|
||
invFun := (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)).symm
|
||
map_add' x y := by
|
||
subst h
|
||
rfl
|
||
map_smul' x y := by
|
||
subst h
|
||
rfl
|
||
left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||
right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||
|
||
lemma colorToRepCongr_comm_ρ {c1 c2 : Color} (h : c1 = c2) (M : SL(2, ℂ)) (x : (colorToRep c1)) :
|
||
(colorToRepCongr h) ((colorToRep c1).ρ M x) = (colorToRep c2).ρ M ((colorToRepCongr h) x) := by
|
||
subst h
|
||
rfl
|
||
|
||
namespace colorFun
|
||
|
||
/-- Given a object in `OverColor Color` the correpsonding tensor product of representations. -/
|
||
def obj' (f : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||
toFun := fun M => PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M),
|
||
map_one' := by
|
||
simp
|
||
map_mul' := fun M N => by
|
||
simp only [CategoryTheory.Functor.id_obj, _root_.map_mul]
|
||
ext x : 2
|
||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]}
|
||
|
||
lemma obj'_ρ (f : OverColor Color) (M : SL(2, ℂ)) : (obj' f).ρ M =
|
||
PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M) := rfl
|
||
|
||
lemma obj'_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ))
|
||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||
(obj' f).ρ M ((PiTensorProduct.tprod ℂ) x) =
|
||
PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by
|
||
rw [obj'_ρ]
|
||
change (PiTensorProduct.map fun x => (colorToRep (f.hom x)).ρ M) ((PiTensorProduct.tprod ℂ) x) =
|
||
(PiTensorProduct.tprod ℂ) fun i => ((colorToRep (f.hom i)).ρ M) (x i)
|
||
rw [PiTensorProduct.map_tprod]
|
||
|
||
/-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _`
|
||
induced by reindexing. -/
|
||
def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V :=
|
||
(PiTensorProduct.reindex ℂ (fun x => colorToRep (f.hom x)) (OverColor.Hom.toEquiv m)).trans
|
||
(PiTensorProduct.congr (fun i => colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i)))
|
||
|
||
lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||
PiTensorProduct.tprod ℂ (fun i => (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||
(x ((OverColor.Hom.toEquiv m).symm i))) := by
|
||
rw [mapToLinearEquiv']
|
||
simp only [CategoryTheory.Functor.id_obj, LinearEquiv.trans_apply]
|
||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||
((PiTensorProduct.reindex ℂ (fun x => CoeSort.coe (colorToRep (f.hom x)))
|
||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||
rfl
|
||
|
||
/-- Given a morphism in `OverColor Color` the corresopnding map of representations induced by
|
||
reindexing. -/
|
||
def map' {f g : OverColor Color} (m : f ⟶ g) : obj' f ⟶ obj' g where
|
||
hom := (mapToLinearEquiv' m).toLinearMap
|
||
comm M := by
|
||
ext x : 2
|
||
refine PiTensorProduct.induction_on' x ?_ (by
|
||
intro x y hx hy
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
intro r x
|
||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||
_root_.map_smul, ModuleCat.coe_comp, Function.comp_apply]
|
||
apply congrArg
|
||
change (mapToLinearEquiv' m) (((obj' f).ρ M) ((PiTensorProduct.tprod ℂ) x)) =
|
||
((obj' g).ρ M) ((mapToLinearEquiv' m) ((PiTensorProduct.tprod ℂ) x))
|
||
rw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||
erw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||
apply congrArg
|
||
funext i
|
||
rw [colorToRepCongr_comm_ρ]
|
||
|
||
end colorFun
|
||
|
||
/-- The functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||
to the corresponding tensor product representation. -/
|
||
@[simps!]
|
||
def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where
|
||
obj := colorFun.obj'
|
||
map := colorFun.map'
|
||
map_id f := by
|
||
ext x
|
||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||
_root_.map_smul, Action.id_hom, ModuleCat.id_apply]
|
||
apply congrArg
|
||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||
exact congrArg _ (funext (fun i => rfl))
|
||
map_comp {X Y Z} f g := by
|
||
ext x
|
||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy])
|
||
simp only [Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul,
|
||
Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply]
|
||
apply congrArg
|
||
rw [colorFun.map', colorFun.map', colorFun.map']
|
||
change (colorFun.mapToLinearEquiv' (CategoryTheory.CategoryStruct.comp f g))
|
||
((PiTensorProduct.tprod ℂ) x) =
|
||
(colorFun.mapToLinearEquiv' g) ((colorFun.mapToLinearEquiv' f) ((PiTensorProduct.tprod ℂ) x))
|
||
rw [colorFun.mapToLinearEquiv'_tprod, colorFun.mapToLinearEquiv'_tprod]
|
||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||
refine congrArg _ (funext (fun i => ?_))
|
||
simp only [colorToRepCongr, Function.comp_apply, Equiv.cast_symm, LinearEquiv.coe_mk,
|
||
Equiv.cast_apply, cast_cast, cast_inj]
|
||
rfl
|
||
|
||
namespace colorFun
|
||
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
|
||
@[simp]
|
||
lemma obj_ρ_empty (g : SL(2, ℂ)) : (colorFun.obj (𝟙_ (OverColor Color))).ρ g = LinearMap.id := by
|
||
erw [colorFun.obj'_ρ]
|
||
ext x
|
||
refine PiTensorProduct.induction_on' x (fun r x => ?_) <| fun x y hx hy => by
|
||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||
Function.comp_apply, hy]
|
||
erw [hx, hy]
|
||
rfl
|
||
simp only [OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj,
|
||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||
_root_.map_smul, PiTensorProduct.map_tprod, LinearMap.id_coe, id_eq]
|
||
apply congrArg
|
||
apply congrArg
|
||
funext i
|
||
exact Empty.elim i
|
||
|
||
/-- The unit natural transformation. -/
|
||
def ε : 𝟙_ (Rep ℂ SL(2, ℂ)) ⟶ colorFun.obj (𝟙_ (OverColor Color)) where
|
||
hom := (PiTensorProduct.isEmptyEquiv Empty).symm.toLinearMap
|
||
comm M := by
|
||
refine LinearMap.ext (fun x => ?_)
|
||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', Functor.id_obj, Category.id_comp, LinearEquiv.coe_coe]
|
||
erw [obj_ρ_empty M]
|
||
rfl
|
||
|
||
end colorFun
|
||
|
||
end
|
||
end Fermion
|