174 lines
5 KiB
Text
174 lines
5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzVector.Basic
|
||
import Mathlib.CategoryTheory.Limits.FintypeCat
|
||
/-!
|
||
|
||
# Lorentz Tensors
|
||
|
||
In this file we define real Lorentz tensors.
|
||
|
||
We implicitly follow the definition of a modular operad.
|
||
This will relation should be made explicit in the future.
|
||
|
||
|
||
## References
|
||
|
||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||
|
||
-/
|
||
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
|
||
|
||
/-!
|
||
|
||
## Real Lorentz tensors
|
||
|
||
-/
|
||
|
||
/-- An index of a real Lorentz tensor is up or down. -/
|
||
inductive RealLorentzTensor.Colors where
|
||
| up : RealLorentzTensor.Colors
|
||
| down : RealLorentzTensor.Colors
|
||
|
||
def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type :=
|
||
match μ with
|
||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
|
||
|
||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||
structure RealLorentzTensor (d : ℕ) (X : FintypeCat) where
|
||
color : X → RealLorentzTensor.Colors
|
||
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) → ℝ
|
||
|
||
namespace RealLorentzTensor
|
||
open BigOperators
|
||
open CategoryTheory
|
||
universe u1
|
||
variable {d : ℕ} {X Y Z : FintypeCat.{u1}}
|
||
|
||
/-- An `IndexType` for a tensor is an element of
|
||
`(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)`. -/
|
||
@[simp]
|
||
def IndexType (T : RealLorentzTensor d X) : Type u1 :=
|
||
(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)
|
||
|
||
lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) :
|
||
T₁.IndexType = T₂.IndexType := by
|
||
simp only [IndexType]
|
||
rw [h]
|
||
|
||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
|
||
cases T₁
|
||
cases T₂
|
||
simp_all only [IndexType, mk.injEq]
|
||
apply And.intro h
|
||
simp only at h
|
||
subst h
|
||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||
subst h'
|
||
rfl
|
||
|
||
/-- The involution acting on colors. -/
|
||
def τ : Colors → Colors
|
||
| Colors.up => Colors.down
|
||
| Colors.down => Colors.up
|
||
|
||
/-- The map τ is an involution. -/
|
||
lemma τ_involutive : Function.Involutive τ := by
|
||
intro x
|
||
cases x <;> rfl
|
||
|
||
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
|
||
def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
|
||
|
||
/-!
|
||
|
||
## Congruence
|
||
|
||
-/
|
||
|
||
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||
between `X` and `Y`. -/
|
||
@[simps!]
|
||
def congrSetIndexType (d : ℕ) (f : X ≃ Y) (i : X → Colors) :
|
||
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
|
||
Equiv.piCongrLeft' _ (f)
|
||
|
||
/-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
|
||
@[simps!]
|
||
def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
|
||
color := (Equiv.piCongrLeft' _ f) T.color
|
||
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
|
||
|
||
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
|
||
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
|
||
apply ext (by rfl)
|
||
have h1 : (congrSetIndexType d (f.trans g) T.color) = (congrSetIndexType d f T.color).trans
|
||
(congrSetIndexType d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
|
||
simp only [Equiv.piCongrLeft'_apply, Equiv.symm_trans_apply, congrSetIndexType]
|
||
exact Equiv.coe_inj.mp rfl
|
||
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexType, Equiv.symm_trans_apply, h1,
|
||
Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq]
|
||
rfl
|
||
|
||
/-- An equivalence of Tensors given an equivalence of underlying sets. -/
|
||
@[simps!]
|
||
def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where
|
||
toFun := congrSetMap f
|
||
invFun := congrSetMap f.symm
|
||
left_inv T := by
|
||
rw [congrSetMap_trans, Equiv.self_trans_symm]
|
||
rfl
|
||
right_inv T := by
|
||
rw [congrSetMap_trans, Equiv.symm_trans_self]
|
||
rfl
|
||
|
||
lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) :
|
||
(@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by
|
||
refine Equiv.coe_inj.mp ?_
|
||
funext T
|
||
exact congrSetMap_trans f g T
|
||
|
||
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Multiplication
|
||
|
||
-/
|
||
|
||
/-! TODO: Following the ethos of modular operads, define multiplication of Lorentz tensors. -/
|
||
|
||
/-!
|
||
|
||
## Contraction of indices
|
||
|
||
-/
|
||
|
||
/-! TODO: Following the ethos of modular operads, define contraction of Lorentz tensors. -/
|
||
|
||
/-!
|
||
|
||
## Rising and lowering indices
|
||
|
||
Rising or lowering an index corresponds to changing the color of that index.
|
||
|
||
-/
|
||
|
||
/-! TODO: Define the rising and lowering of indices using contraction with the metric. -/
|
||
|
||
/-!
|
||
|
||
## Graphical species and Lorentz tensors
|
||
|
||
-/
|
||
/-! TODO: From Lorentz tensors graphical species. -/
|
||
/-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
|
||
|
||
|
||
end RealLorentzTensor
|