PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/NormalOrder.lean
2025-01-30 05:52:50 +00:00

235 lines
9.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
/-!
# Normal Ordering on Field operator algebra
-/
namespace FieldSpecification
open CrAnAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrder_superCommuteF_eq_zero_mul`
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrder_superCommuteF_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommuteF_of_create_create φa φa' hφa hφa']
simp
· rw [normalOrder_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommuteF_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommuteF_of_annihilate_annihilate φa φa' hφa hφa']
simp
lemma ι_normalOrder_superCommuteF_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
(a : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap ((ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca))) a = 0
rw [hf]
simp
lemma ι_normalOrder_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrder_superCommuteF_ofCrAnList_eq_zero φa φa' _ _
rw [hf]
simp
lemma ι_normalOrder_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnList_singleton]
rw [ι_normalOrder_superCommuteF_ofCrAnState_eq_zero_mul]
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrder_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul]
simp
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul]
lemma ι_normalOrder_superCommuteF_ofCrAnList_eq_zero_mul
(φs : List 𝓕.CrAnStates)
(a b c : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) = 0 := by
apply ofCrAnListBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
apply ofCrAnListBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommuteF_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ([d, c]ₛca * b) = 0 := by
rw [← ι_normalOrder_superCommuteF_eq_zero_mul 1 b c d]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommuteF_eq_zero_mul a 1 c d]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛca * b1 * b2) = 0 := by
rw [← ι_normalOrder_superCommuteF_eq_zero_mul a (b1 * b2) c d]
congr 2
noncomm_ring
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommuteF_eq_zero_mul 1 1 c d]
simp
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
lemma ι_normalOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrder_zero_of_mem_ideal (a - b) h
/-- Normal ordering on `FieldOpAlgebra`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.normalOrder) ι_normalOrder_eq_of_equiv
map_add' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_smul, ι_apply, ι_apply]
simp
end FieldOpAlgebra
end FieldSpecification