121 lines
4.3 KiB
Text
121 lines
4.3 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
|
||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
|
||
/-!
|
||
|
||
# SuperCommute on Field operator algebra
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
open CrAnAlgebra
|
||
open HepLean.List
|
||
open FieldStatistic
|
||
|
||
namespace FieldOpAlgebra
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
lemma ι_superCommuteF_eq_zero_of_ι_right_zero (a b : 𝓕.CrAnAlgebra) (h : ι b = 0) :
|
||
ι [a, b]ₛca = 0 := by
|
||
rw [superCommuteF_expand_bosonicProj_fermionicProj]
|
||
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
|
||
simp_all
|
||
|
||
lemma ι_superCommuteF_eq_zero_of_ι_left_zero (a b : 𝓕.CrAnAlgebra) (h : ι a = 0) :
|
||
ι [a, b]ₛca = 0 := by
|
||
rw [superCommuteF_expand_bosonicProj_fermionicProj]
|
||
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
|
||
simp_all
|
||
|
||
/-!
|
||
|
||
## Defining normal order for `FiedOpAlgebra`.
|
||
|
||
-/
|
||
|
||
lemma ι_superCommuteF_right_zero_of_mem_ideal (a b : 𝓕.CrAnAlgebra)
|
||
(h : b ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι [a, b]ₛca = 0 := by
|
||
apply ι_superCommuteF_eq_zero_of_ι_right_zero
|
||
exact (ι_eq_zero_iff_mem_ideal b).mpr h
|
||
|
||
lemma ι_superCommuteF_eq_of_equiv_right (a b1 b2 : 𝓕.CrAnAlgebra) (h : b1 ≈ b2) :
|
||
ι [a, b1]ₛca = ι [a, b2]ₛca := by
|
||
rw [equiv_iff_sub_mem_ideal] at h
|
||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||
simp only [LinearMap.mem_ker, ← map_sub]
|
||
exact ι_superCommuteF_right_zero_of_mem_ideal a (b1 - b2) h
|
||
|
||
/-- The super commutor on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
|
||
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) :
|
||
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ superCommuteF a)
|
||
(ι_superCommuteF_eq_of_equiv_right a)
|
||
map_add' x y := by
|
||
obtain ⟨x, hx⟩ := ι_surjective x
|
||
obtain ⟨y, hy⟩ := ι_surjective y
|
||
subst hx hy
|
||
rw [← map_add, ι_apply, ι_apply, ι_apply]
|
||
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
|
||
simp
|
||
map_smul' c y := by
|
||
obtain ⟨y, hy⟩ := ι_surjective y
|
||
subst hy
|
||
rw [← map_smul, ι_apply, ι_apply]
|
||
simp
|
||
|
||
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) :
|
||
superCommuteRight a (ι b) = ι [a, b]ₛca := by rfl
|
||
|
||
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) :
|
||
superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by rfl
|
||
|
||
lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
|
||
superCommuteRight a1 = superCommuteRight a2 := by
|
||
rw [equiv_iff_sub_mem_ideal] at h
|
||
ext b
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
have ha1b1 : (superCommuteRight (a1 - a2)) (ι b) = 0 := by
|
||
rw [superCommuteRight_apply_ι]
|
||
apply ι_superCommuteF_eq_zero_of_ι_left_zero
|
||
exact (ι_eq_zero_iff_mem_ideal (a1 - a2)).mpr h
|
||
simp_all only [superCommuteRight_apply_ι, map_sub, LinearMap.sub_apply]
|
||
trans ι ((superCommuteF a2) b) + 0
|
||
rw [← ha1b1]
|
||
simp only [add_sub_cancel]
|
||
simp
|
||
|
||
/-- The super commutor on the `FieldOpAlgebra`. -/
|
||
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[ℂ]
|
||
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv
|
||
map_add' x y := by
|
||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||
ext b
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
rw [← map_add, ι_apply, ι_apply, ι_apply, ι_apply]
|
||
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
|
||
simp only [LinearMap.add_apply]
|
||
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot, superCommuteRight_apply_quot]
|
||
simp
|
||
map_smul' c y := by
|
||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||
ext b
|
||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||
rw [← map_smul, ι_apply, ι_apply, ι_apply]
|
||
simp only [Quotient.lift_mk, RingHom.id_apply, LinearMap.smul_apply]
|
||
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot]
|
||
simp
|
||
|
||
@[inherit_doc superCommute]
|
||
scoped[FieldSpecification.FieldOpAlgebra] notation "[" a "," b "]ₛ" => superCommute a b
|
||
|
||
lemma ι_superCommuteF_eq_superCommute (a b : 𝓕.CrAnAlgebra) :
|
||
ι [a, b]ₛca = [ι a, ι b]ₛ := rfl
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|