306 lines
10 KiB
Text
306 lines
10 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Basic
|
||
import Lean.Elab.Term
|
||
/-!
|
||
|
||
## Elaboration of tensor trees
|
||
|
||
This file turns tensor expressions into tensor trees.
|
||
|
||
-/
|
||
open Lean
|
||
open Lean.Elab.Term
|
||
|
||
open Lean
|
||
open Lean.Meta
|
||
open Lean.Elab
|
||
open Lean.Elab.Term
|
||
open Lean Meta Elab Tactic
|
||
open IndexNotation
|
||
|
||
/-!
|
||
|
||
## Indexies
|
||
|
||
-/
|
||
|
||
/-- A syntax category for indices of tensor expressions. -/
|
||
declare_syntax_cat indexExpr
|
||
|
||
/-- A basic index is a ident. -/
|
||
syntax ident : indexExpr
|
||
|
||
/-- An index can be a num, which will be used to evaluate the tensor. -/
|
||
syntax num : indexExpr
|
||
|
||
/-- Notation to discribe the jiggle of a tensor index. -/
|
||
syntax "τ(" ident ")" : indexExpr
|
||
|
||
/-- Bool which is ture if an index is a num. -/
|
||
def indexExprIsNum (stx : Syntax) : Bool :=
|
||
match stx with
|
||
| `(indexExpr|$_:num) => true
|
||
| _ => false
|
||
|
||
/-- If an index is a num - the undelrying natural number. -/
|
||
def indexToNum (stx : Syntax) : TermElabM Nat :=
|
||
match stx with
|
||
| `(indexExpr|$a:num) =>
|
||
match a.raw.isNatLit? with
|
||
| some n => return n
|
||
| none => throwError "Expected a natural number literal."
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in indexToNum: {stx}"
|
||
|
||
/-- When an index is not a num, the corresponding ident. -/
|
||
def indexToIdent (stx : Syntax) : TermElabM Ident :=
|
||
match stx with
|
||
| `(indexExpr|$a:ident) => return a
|
||
| `(indexExpr| τ($a:ident)) => return a
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in indexToIdent: {stx}"
|
||
|
||
/-- Takes a pair ``a b : ℕ × TSyntax `indexExpr``. If `a.1 < b.1` and `a.2 = b.2` then
|
||
outputs `some (a.1, b.1)`, otherwise `none`. -/
|
||
def indexPosEq (a b : ℕ × TSyntax `indexExpr) : TermElabM (Option (ℕ × ℕ)) := do
|
||
let a' ← indexToIdent a.2
|
||
let b' ← indexToIdent b.2
|
||
if a.1 < b.1 ∧ Lean.TSyntax.getId a' = Lean.TSyntax.getId b' then
|
||
return some (a.1, b.1)
|
||
else
|
||
return none
|
||
|
||
/-- Bool which is true if an index is of the form τ(i) that is, to be dualed. -/
|
||
def indexToDual (stx : Syntax) : Bool :=
|
||
match stx with
|
||
| `(indexExpr| τ($_)) => true
|
||
| _ => false
|
||
/-!
|
||
|
||
## Tensor expressions
|
||
|
||
-/
|
||
|
||
/-- A syntax category for tensor expressions. -/
|
||
declare_syntax_cat tensorExpr
|
||
|
||
/-- The syntax for a tensor node. -/
|
||
syntax term "|" (ppSpace indexExpr)* : tensorExpr
|
||
|
||
/-- The syntax for tensor prod two tensor nodes. -/
|
||
syntax tensorExpr "⊗" tensorExpr : tensorExpr
|
||
|
||
/-- The syntax for tensor addition. -/
|
||
syntax tensorExpr "+" tensorExpr : tensorExpr
|
||
|
||
/-- Allowing brackets to be used in a tensor expression. -/
|
||
syntax "(" tensorExpr ")" : tensorExpr
|
||
|
||
|
||
namespace TensorNode
|
||
|
||
/-!
|
||
|
||
## For tensor nodes.
|
||
|
||
The operations are done in the following order:
|
||
- evaluation.
|
||
- dualization.
|
||
- contraction.
|
||
|
||
We also want to ensure the number of indices is correct.
|
||
|
||
-/
|
||
|
||
|
||
/-- The indices of a tensor node. Before contraction, dualisation, and evaluation. -/
|
||
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||
match stx with
|
||
| `(tensorExpr| $_:term | $[$args]*) => do
|
||
let indices ← args.toList.mapM fun arg => do
|
||
match arg with
|
||
| `(indexExpr|$t:indexExpr) => pure t
|
||
return indices
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in getIndicesNode: {stx}"
|
||
|
||
/-- Uses the structure of the tensor to get the number of indices. -/
|
||
def getNoIndicesExact (stx : Syntax) : TermElabM ℕ := do
|
||
let expr ← elabTerm stx none
|
||
let type ← inferType expr
|
||
match type with
|
||
| Expr.app _ (Expr.app _ (Expr.app _ c)) =>
|
||
let typeC ← inferType c
|
||
match typeC with
|
||
| Expr.forallE _ (Expr.app _ (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n))) _)) _ _ =>
|
||
return n
|
||
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
|
||
| _ =>
|
||
throwError "Could not extract number of indices from tensor (getNoIndicesExact)."
|
||
|
||
|
||
|
||
/-- The positions in getIndicesNode which get evaluated, and the value they take. -/
|
||
partial def getEvalPos (stx : Syntax) : TermElabM (List (ℕ × ℕ)) := do
|
||
let ind ← getIndices stx
|
||
let indEnum := ind.enum
|
||
let evals := indEnum.filter (fun x => indexExprIsNum x.2)
|
||
let evals2 ← (evals.mapM (fun x => indexToNum x.2))
|
||
return List.zip (evals.map (fun x => x.1)) evals2
|
||
|
||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.eval` to the given term. -/
|
||
def evalSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||
l.foldl (fun T' (x1, x2) => Syntax.mkApp (mkIdent ``TensorTree.eval)
|
||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x2), T']) T
|
||
|
||
/-- The positions in getIndicesNode which get dualized. -/
|
||
partial def getDualPos (stx : Syntax) : TermElabM (List ℕ) := do
|
||
let ind ← getIndices stx
|
||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||
let indEnum := indFilt.enum
|
||
let duals := indEnum.filter (fun x => indexToDual x.2)
|
||
return duals.map (fun x => x.1)
|
||
|
||
/-- For each element of `l : List ℕ` applies `TensorTree.jiggle` to the given term. -/
|
||
def dualSyntax (l : List ℕ) (T : Term) : Term :=
|
||
l.foldl (fun T' x => Syntax.mkApp (mkIdent ``TensorTree.jiggle)
|
||
#[Syntax.mkNumLit (toString x), T']) T
|
||
|
||
/-- The pairs of positions in getIndicesNode which get contracted. -/
|
||
partial def getContrPos (stx : Syntax) : TermElabM (List (ℕ × ℕ)) := do
|
||
let ind ← getIndices stx
|
||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||
let indEnum := indFilt.enum
|
||
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
|
||
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
|
||
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
|
||
throwError "To many contractions"
|
||
return filt
|
||
|
||
/-- The list of indices after contraction. -/
|
||
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||
let ind ← getIndices stx
|
||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||
return ind.filter (fun x => indFilt.count x ≤ 1)
|
||
|
||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||
|
||
/-- Creates the syntax associated with a tensor node. -/
|
||
def syntaxFull (stx : Syntax) : TermElabM Term := do
|
||
match stx with
|
||
| `(tensorExpr| $T:term | $[$args]*) => do
|
||
let indices ← getIndices stx
|
||
let rawIndex ← getNoIndicesExact T
|
||
if indices.length ≠ rawIndex then
|
||
throwError "The number of indices does not match the tensor {T}."
|
||
let tensorNodeSyntax := Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
|
||
let evalSyntax := evalSyntax (← getEvalPos stx) tensorNodeSyntax
|
||
let dualSyntax := dualSyntax (← getDualPos stx) evalSyntax
|
||
let contrSyntax := contrSyntax (← getContrPos stx) dualSyntax
|
||
return contrSyntax
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
|
||
|
||
end TensorNode
|
||
|
||
namespace ProdNode
|
||
|
||
/-!
|
||
|
||
## For product nodes.
|
||
|
||
For a product node we can take the tensor product, and then contract the indices.
|
||
|
||
-/
|
||
|
||
/-- Gets the indices associated with a product node. -/
|
||
partial def getIndices (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||
match stx with
|
||
| `(tensorExpr| $_:term | $[$args]*) => do
|
||
return (← TensorNode.withoutContr stx)
|
||
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
|
||
let indicesA ← getIndices a
|
||
let indicesB ← getIndices b
|
||
return indicesA ++ indicesB
|
||
| `(tensorExpr| ($a:tensorExpr)) => do
|
||
return (← getIndices a)
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in getIndicesProd: {stx}"
|
||
|
||
|
||
/-- The pairs of positions in getIndicesNode which get contracted. -/
|
||
partial def getContrPos (stx : Syntax) : TermElabM (List (ℕ × ℕ)) := do
|
||
let ind ← getIndices stx
|
||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||
let indEnum := indFilt.enum
|
||
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
|
||
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
|
||
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
|
||
throwError "To many contractions"
|
||
return filt
|
||
|
||
/-- The list of indices after contraction. -/
|
||
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||
let ind ← getIndices stx
|
||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||
return ind.filter (fun x => indFilt.count x ≤ 1)
|
||
|
||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||
|
||
/-- The syntax associated with a product of tensors. -/
|
||
def prodSyntax (T1 T2 : Term) : Term :=
|
||
Syntax.mkApp (mkIdent ``TensorTree.prod) #[T1, T2]
|
||
|
||
/-- The full term taking tensor syntax into a term for products and single tensor nodes. -/
|
||
partial def syntaxFull (stx : Syntax) : TermElabM Term := do
|
||
match stx with
|
||
| `(tensorExpr| $_:term | $[$args]*) => TensorNode.syntaxFull stx
|
||
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
|
||
let prodSyntax := prodSyntax (← syntaxFull a) (← syntaxFull b)
|
||
let contrSyntax := contrSyntax (← getContrPos stx) prodSyntax
|
||
return contrSyntax
|
||
| `(tensorExpr| ($a:tensorExpr)) => do
|
||
return (← syntaxFull a)
|
||
| _ =>
|
||
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
|
||
|
||
|
||
/-- An elaborator for tensor nodes. This is to be generalized. -/
|
||
def elaborateTensorNode (stx : Syntax) : TermElabM Expr := do
|
||
let tensorExpr ← elabTerm (← syntaxFull stx) none
|
||
return tensorExpr
|
||
|
||
/-- Syntax turning a tensor expression into a term. -/
|
||
syntax (name := tensorExprSyntax) "{" tensorExpr "}ᵀ" : term
|
||
|
||
elab_rules (kind:=tensorExprSyntax) : term
|
||
| `(term| {$e:tensorExpr}ᵀ) => do
|
||
let tensorTree ← elaborateTensorNode e
|
||
return tensorTree
|
||
|
||
variable {S : TensorStruct} {c4 : Fin 4 → S.C} (T4 : S.F.obj (OverColor.mk c4))
|
||
{c5 : Fin 5 → S.C} (T5 : S.F.obj (OverColor.mk c5))
|
||
|
||
/-!
|
||
|
||
# Checks
|
||
|
||
-/
|
||
/-
|
||
example : {T4 | i j k m}ᵀ = TensorTree.tensorNode T4 := by rfl
|
||
|
||
#check {T4 | i j l d ⊗ T5 | i j k a b}ᵀ
|
||
|
||
#check {(T4 | i j l a ⊗ T5 | i j k c d) ⊗ T5 | i1 i2 i3 e f}ᵀ
|
||
-/
|
||
end ProdNode
|