250 lines
10 KiB
Text
250 lines
10 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.StandardModel.HiggsBoson.Basic
|
||
import Mathlib.RepresentationTheory.Basic
|
||
import HepLean.StandardModel.Basic
|
||
import HepLean.StandardModel.Representations
|
||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||
/-!
|
||
|
||
# The action of the gauge group on the Higgs field
|
||
|
||
-/
|
||
/-! TODO: Currently this only contains the action of the global gauge group. Generalize. -/
|
||
noncomputable section
|
||
|
||
namespace StandardModel
|
||
|
||
namespace HiggsVec
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
/-!
|
||
|
||
## The representation of the gauge group on the Higgs vector space
|
||
|
||
-/
|
||
|
||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||
@[simps!]
|
||
noncomputable def higgsRepUnitary : GaugeGroupI →* unitaryGroup (Fin 2) ℂ where
|
||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||
map_mul' := by
|
||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
|
||
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||
repeat rw [mul_assoc]
|
||
map_one' := by simp
|
||
|
||
/-- Using the orthonormal basis of `HiggsVec`, turns a `2×2`-matrix intoa a linear map
|
||
of `HiggsVec`. -/
|
||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := LinearMap.toContinuousLinearMap
|
||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
|
||
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
|
||
|
||
/-- The map `matrixToLin` commutes with the `star` operation. -/
|
||
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
matrixToLin (star g) = star (matrixToLin g) :=
|
||
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
|
||
|
||
/-- If `g` is a member of the `2 × 2` unitary group, then as a linear map from
|
||
`HiggsVec →L[ℂ] HiggsVec` formed by the orthonormal basis on `HiggsVec`, it is unitary. -/
|
||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||
matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by
|
||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||
exact Prod.mk_eq_one.mp rfl
|
||
|
||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||
of `higgsVec`. -/
|
||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||
map_mul' g h := by simp
|
||
map_one' := by simp
|
||
|
||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||
@[simps!]
|
||
def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec :=
|
||
DistribMulAction.toModuleEnd ℂ HiggsVec
|
||
|
||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||
@[simps!]
|
||
def rep : Representation ℂ GaugeGroupI HiggsVec :=
|
||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||
|
||
lemma higgsRepUnitary_mul (g : GaugeGroupI) (φ : HiggsVec) :
|
||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||
|
||
/-- The application of gauge group on a Higgs vector can be decomposed in
|
||
to an smul with the `U(1)-factor` and a multiplication by the `SU(2)`-factor. -/
|
||
lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||
higgsRepUnitary_mul g φ
|
||
|
||
/-!
|
||
|
||
# Gauge freedom
|
||
|
||
-/
|
||
|
||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||
vector to zero, and the second component to a real -/
|
||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
![![φ 1 /‖φ‖, - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖, conj (φ 1) / ‖φ‖]]
|
||
|
||
lemma rotateMatrix_star (φ : HiggsVec) :
|
||
star φ.rotateMatrix =
|
||
![![conj (φ 1) /‖φ‖, φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖, φ 1 / ‖φ‖]] := by
|
||
simp_rw [star, rotateMatrix, conjTranspose]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||
|
||
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp [rotateMatrix, det_fin_two]
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
|
||
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||
erw [mul_fin_two, one_fin_two]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> field_simp
|
||
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
· ring_nf
|
||
· ring_nf
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||
|
||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||
vector to zero, and the second component to a real number. -/
|
||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI :=
|
||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||
|
||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
rep (rotateGuageGroup hφ) φ = ![0, Complex.ofRealHom ‖φ‖] := by
|
||
rw [rep_apply]
|
||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||
Nat.succ_eq_add_one, Nat.reduceAdd, ofRealHom_eq_coe]
|
||
ext i
|
||
fin_cases i
|
||
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
|
||
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
ring_nf
|
||
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
|
||
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
|
||
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||
∃ (g : GaugeGroupI), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||
by_cases h : φ = 0
|
||
· use ⟨1, 1, 1⟩
|
||
simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||
norm_zero]
|
||
ext i
|
||
fin_cases i <;> rfl
|
||
· use rotateGuageGroup h
|
||
exact rotateGuageGroup_apply h
|
||
|
||
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
||
∃ (g : GaugeGroupI), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
|
||
let P : GaugeGroupI := ⟨1, ⟨!![0, 1; -1, 0], by
|
||
rw [mem_specialUnitaryGroup_iff]
|
||
apply And.intro
|
||
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
|
||
ext i j
|
||
rw [Matrix.mul_apply, Fin.sum_univ_two]
|
||
fin_cases i <;> fin_cases j
|
||
<;> simp
|
||
· simp [det_fin_two]⟩, 1⟩
|
||
use P * g
|
||
rw [rep.map_mul]
|
||
change rep P (rep g φ) = _
|
||
rw [h, rep_apply]
|
||
simp only [one_pow, Nat.succ_eq_add_one, Nat.reduceAdd, ofRealHom_eq_coe, mulVec_cons, zero_smul,
|
||
coe_smul, mulVec_empty, add_zero, zero_add, one_smul]
|
||
funext i
|
||
fin_cases i
|
||
· simp only [Fin.zero_eta, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_zero,
|
||
tail_cons, head_cons, real_smul, mul_one]
|
||
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
|
||
tail_cons, smul_zero]
|
||
|
||
informal_lemma guage_orbit where
|
||
math :≈ "There exists a `g` in ``GaugeGroupI such that `rep g φ = φ'` if and only if
|
||
‖φ‖ = ‖φ'‖."
|
||
deps :≈ [``rotate_fst_zero_snd_real]
|
||
|
||
informal_lemma stability_group_single where
|
||
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
|
||
`gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by
|
||
`(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`."
|
||
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
|
||
|
||
informal_lemma stability_group where
|
||
math :≈ "The subgroup of `gaugeGroup := SU(3) x SU(2) x U(1)` which preserves every `HiggsVec`
|
||
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
|
||
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
|
||
α is a sixth root of unity."
|
||
deps :≈ [``HiggsVec, ``rep]
|
||
|
||
end HiggsVec
|
||
|
||
/-! TODO: Define the global gauge action on HiggsField. -/
|
||
/-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/
|
||
/-! TODO: Prove invariance of potential under global gauge action. -/
|
||
|
||
namespace HiggsField
|
||
|
||
/-!
|
||
|
||
## Gauge transformations acting on Higgs fields.
|
||
|
||
-/
|
||
|
||
informal_definition gaugeAction where
|
||
math :≈ "The action of ``gaugeTransformI on ``HiggsField acting pointwise through
|
||
``HiggsVec.rep."
|
||
deps :≈ [``HiggsVec.rep, ``gaugeTransformI]
|
||
|
||
informal_lemma guage_orbit where
|
||
math :≈ "There exists a `g` in ``gaugeTransformI such that `gaugeAction g φ = φ'` if and only if
|
||
φ(x)^† φ(x) = φ'(x)^† φ'(x)."
|
||
deps :≈ [``gaugeAction]
|
||
|
||
informal_lemma gauge_orbit_surject where
|
||
math :≈ "For every smooth map f from ``SpaceTime to ℝ such that `f` is positive semidefinite,
|
||
there exists a Higgs field φ such that `f = φ^† φ`."
|
||
deps :≈ [``HiggsField, ``SpaceTime]
|
||
|
||
end HiggsField
|
||
|
||
end StandardModel
|
||
end
|