412 lines
14 KiB
Text
412 lines
14 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
|
||
import HepLean.PerturbationTheory.Koszul.KoszulSign
|
||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||
/-!
|
||
|
||
# Grading on the CrAnAlgebra
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
open FieldStatistic
|
||
|
||
namespace CrAnAlgebra
|
||
|
||
noncomputable section
|
||
|
||
/-- The submodule of `CrAnAlgebra` spanned by lists of field statistic `f`. -/
|
||
def statisticSubmodule (f : FieldStatistic) : Submodule ℂ 𝓕.CrAnAlgebra :=
|
||
Submodule.span ℂ {a | ∃ φs, a = ofCrAnList φs ∧ (𝓕 |>ₛ φs) = f}
|
||
|
||
lemma ofCrAnList_mem_statisticSubmodule_of (φs : List 𝓕.CrAnStates) (f : FieldStatistic)
|
||
(h : (𝓕 |>ₛ φs) = f) :
|
||
ofCrAnList φs ∈ statisticSubmodule f := by
|
||
refine Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩
|
||
|
||
lemma ofCrAnList_bosonic_or_fermionic (φs : List 𝓕.CrAnStates) :
|
||
ofCrAnList φs ∈ statisticSubmodule bosonic ∨ ofCrAnList φs ∈ statisticSubmodule fermionic := by
|
||
by_cases h : (𝓕 |>ₛ φs) = bosonic
|
||
· left
|
||
exact ofCrAnList_mem_statisticSubmodule_of φs bosonic h
|
||
· right
|
||
exact ofCrAnList_mem_statisticSubmodule_of φs fermionic (by simpa using h)
|
||
|
||
lemma ofCrAnState_bosonic_or_fermionic (φ : 𝓕.CrAnStates) :
|
||
ofCrAnState φ ∈ statisticSubmodule bosonic ∨ ofCrAnState φ ∈ statisticSubmodule fermionic := by
|
||
rw [← ofCrAnList_singleton]
|
||
exact ofCrAnList_bosonic_or_fermionic [φ]
|
||
|
||
/-- The projection of an element of `CrAnAlgebra` onto it's bosonic part. -/
|
||
def bosonicProj : 𝓕.CrAnAlgebra →ₗ[ℂ] statisticSubmodule (𝓕 := 𝓕) bosonic :=
|
||
Basis.constr ofCrAnListBasis ℂ fun φs =>
|
||
if h : (𝓕 |>ₛ φs) = bosonic then
|
||
⟨ofCrAnList φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩
|
||
else
|
||
0
|
||
|
||
lemma bosonicProj_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
||
bosonicProj (ofCrAnList φs) = if h : (𝓕 |>ₛ φs) = bosonic then
|
||
⟨ofCrAnList φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩ else 0 := by
|
||
conv_lhs =>
|
||
rw [← ofListBasis_eq_ofList, bosonicProj, Basis.constr_basis]
|
||
|
||
lemma bosonicProj_of_mem_bosonic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSubmodule bosonic) :
|
||
bosonicProj a = ⟨a, h⟩ := by
|
||
let p (a : 𝓕.CrAnAlgebra) (hx : a ∈ statisticSubmodule bosonic) : Prop :=
|
||
bosonicProj a = ⟨a, hx⟩
|
||
change p a h
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
simp only [Set.mem_setOf_eq] at hx
|
||
obtain ⟨φs, rfl, h⟩ := hx
|
||
simp [p, bosonicProj_ofCrAnList, h]
|
||
· simp only [map_zero, p]
|
||
rfl
|
||
· intro x y hx hy hpx hpy
|
||
simp_all [p]
|
||
· intro a x hx hy
|
||
simp_all [p]
|
||
|
||
lemma bosonicProj_of_mem_fermionic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSubmodule fermionic) :
|
||
bosonicProj a = 0 := by
|
||
let p (a : 𝓕.CrAnAlgebra) (hx : a ∈ statisticSubmodule fermionic) : Prop :=
|
||
bosonicProj a = 0
|
||
change p a h
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
simp only [Set.mem_setOf_eq] at hx
|
||
obtain ⟨φs, rfl, h⟩ := hx
|
||
simp [p, bosonicProj_ofCrAnList, h]
|
||
· simp [p]
|
||
· intro x y hx hy hpx hpy
|
||
simp_all [p]
|
||
· intro a x hx hy
|
||
simp_all [p]
|
||
|
||
@[simp]
|
||
lemma bosonicProj_of_bonosic_part
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
bosonicProj (a bosonic) = a bosonic := by
|
||
apply bosonicProj_of_mem_bosonic
|
||
|
||
@[simp]
|
||
lemma bosonicProj_of_fermionic_part
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
bosonicProj (a fermionic).1 = 0 := by
|
||
apply bosonicProj_of_mem_fermionic
|
||
exact Submodule.coe_mem (a.toFun fermionic)
|
||
|
||
/-- The projection of an element of `CrAnAlgebra` onto it's fermionic part. -/
|
||
def fermionicProj : 𝓕.CrAnAlgebra →ₗ[ℂ] statisticSubmodule (𝓕 := 𝓕) fermionic :=
|
||
Basis.constr ofCrAnListBasis ℂ fun φs =>
|
||
if h : (𝓕 |>ₛ φs) = fermionic then
|
||
⟨ofCrAnList φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩
|
||
else
|
||
0
|
||
|
||
lemma fermionicProj_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
||
fermionicProj (ofCrAnList φs) = if h : (𝓕 |>ₛ φs) = fermionic then
|
||
⟨ofCrAnList φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩ else 0 := by
|
||
conv_lhs =>
|
||
rw [← ofListBasis_eq_ofList, fermionicProj, Basis.constr_basis]
|
||
|
||
lemma fermionicProj_ofCrAnList_if_bosonic (φs : List 𝓕.CrAnStates) :
|
||
fermionicProj (ofCrAnList φs) = if h : (𝓕 |>ₛ φs) = bosonic then
|
||
0 else ⟨ofCrAnList φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl,
|
||
by simpa using h⟩⟩⟩ := by
|
||
rw [fermionicProj_ofCrAnList]
|
||
by_cases h1 : (𝓕 |>ₛ φs) = fermionic
|
||
· simp [h1]
|
||
· simp only [h1, ↓reduceDIte]
|
||
simp only [neq_fermionic_iff_eq_bosonic] at h1
|
||
simp [h1]
|
||
|
||
lemma fermionicProj_of_mem_fermionic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSubmodule fermionic) :
|
||
fermionicProj a = ⟨a, h⟩ := by
|
||
let p (a : 𝓕.CrAnAlgebra) (hx : a ∈ statisticSubmodule fermionic) : Prop :=
|
||
fermionicProj a = ⟨a, hx⟩
|
||
change p a h
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
simp only [Set.mem_setOf_eq] at hx
|
||
obtain ⟨φs, rfl, h⟩ := hx
|
||
simp [p, fermionicProj_ofCrAnList, h]
|
||
· simp only [map_zero, p]
|
||
rfl
|
||
· intro x y hx hy hpx hpy
|
||
simp_all [p]
|
||
· intro a x hx hy
|
||
simp_all [p]
|
||
|
||
lemma fermionicProj_of_mem_bosonic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSubmodule bosonic) :
|
||
fermionicProj a = 0 := by
|
||
let p (a : 𝓕.CrAnAlgebra) (hx : a ∈ statisticSubmodule bosonic) : Prop :=
|
||
fermionicProj a = 0
|
||
change p a h
|
||
apply Submodule.span_induction
|
||
· intro x hx
|
||
simp only [Set.mem_setOf_eq] at hx
|
||
obtain ⟨φs, rfl, h⟩ := hx
|
||
simp [p, fermionicProj_ofCrAnList, h]
|
||
· simp [p]
|
||
· intro x y hx hy hpx hpy
|
||
simp_all [p]
|
||
· intro a x hx hy
|
||
simp_all [p]
|
||
|
||
@[simp]
|
||
lemma fermionicProj_of_bosonic_part
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
fermionicProj (a bosonic).1 = 0 := by
|
||
apply fermionicProj_of_mem_bosonic
|
||
exact Submodule.coe_mem (a.toFun bosonic)
|
||
|
||
@[simp]
|
||
lemma fermionicProj_of_fermionic_part
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
fermionicProj (a fermionic) = a fermionic := by
|
||
apply fermionicProj_of_mem_fermionic
|
||
|
||
lemma bosonicProj_add_fermionicProj (a : 𝓕.CrAnAlgebra) :
|
||
a.bosonicProj + (a.fermionicProj).1 = a := by
|
||
let f1 :𝓕.CrAnAlgebra →ₗ[ℂ] 𝓕.CrAnAlgebra :=
|
||
(statisticSubmodule bosonic).subtype ∘ₗ bosonicProj
|
||
let f2 :𝓕.CrAnAlgebra →ₗ[ℂ] 𝓕.CrAnAlgebra :=
|
||
(statisticSubmodule fermionic).subtype ∘ₗ fermionicProj
|
||
change (f1 + f2) a = LinearMap.id (R := ℂ) a
|
||
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun φs ↦ ?_) a
|
||
simp only [ofListBasis_eq_ofList, LinearMap.add_apply, LinearMap.coe_comp, Submodule.coe_subtype,
|
||
Function.comp_apply, LinearMap.id_coe, id_eq, f1, f2]
|
||
rw [bosonicProj_ofCrAnList, fermionicProj_ofCrAnList_if_bosonic]
|
||
by_cases h : (𝓕 |>ₛ φs) = bosonic
|
||
· simp [h]
|
||
· simp [h]
|
||
|
||
lemma coeAddMonoidHom_apply_eq_bosonic_plus_fermionic
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
DirectSum.coeAddMonoidHom statisticSubmodule a = a.1 bosonic + a.1 fermionic := by
|
||
let C : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i)) → Prop :=
|
||
fun a => DirectSum.coeAddMonoidHom statisticSubmodule a = a.1 bosonic + a.1 fermionic
|
||
change C a
|
||
apply DirectSum.induction_on
|
||
· simp [C]
|
||
· intro i x
|
||
simp only [DFinsupp.toFun_eq_coe, DirectSum.coeAddMonoidHom_of, C]
|
||
rw [DirectSum.of_apply, DirectSum.of_apply]
|
||
match i with
|
||
| bosonic => simp
|
||
| fermionic => simp
|
||
· intro x y hx hy
|
||
simp_all only [C, DFinsupp.toFun_eq_coe, map_add, DirectSum.add_apply, Submodule.coe_add]
|
||
abel
|
||
|
||
lemma directSum_eq_bosonic_plus_fermionic
|
||
(a : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i))) :
|
||
a = (DirectSum.of (fun i => ↥(statisticSubmodule i)) bosonic) (a bosonic) +
|
||
(DirectSum.of (fun i => ↥(statisticSubmodule i)) fermionic) (a fermionic) := by
|
||
let C : DirectSum FieldStatistic (fun i => (statisticSubmodule (𝓕 := 𝓕) i)) → Prop :=
|
||
fun a => a = (DirectSum.of (fun i => ↥(statisticSubmodule i)) bosonic) (a bosonic) +
|
||
(DirectSum.of (fun i => ↥(statisticSubmodule i)) fermionic) (a fermionic)
|
||
change C a
|
||
apply DirectSum.induction_on
|
||
· simp [C]
|
||
· intro i x
|
||
simp only [C]
|
||
match i with
|
||
| bosonic =>
|
||
simp only [DirectSum.of_eq_same, self_eq_add_right]
|
||
rw [DirectSum.of_eq_of_ne]
|
||
simp only [map_zero]
|
||
simp
|
||
| fermionic =>
|
||
simp only [DirectSum.of_eq_same, add_zero]
|
||
rw [DirectSum.of_eq_of_ne]
|
||
simp only [map_zero, zero_add]
|
||
simp
|
||
· intro x y hx hy
|
||
simp only [DirectSum.add_apply, map_add, C] at hx hy ⊢
|
||
conv_lhs => rw [hx, hy]
|
||
abel
|
||
|
||
/-- The instance of a graded algebra on `CrAnAlgebra`. -/
|
||
instance crAnAlgebraGrade : GradedAlgebra (A := 𝓕.CrAnAlgebra) statisticSubmodule where
|
||
one_mem := by
|
||
simp only [statisticSubmodule]
|
||
refine Submodule.mem_span.mpr fun p a => a ?_
|
||
simp only [Set.mem_setOf_eq]
|
||
use []
|
||
simp only [ofCrAnList_nil, ofList_empty, true_and]
|
||
rfl
|
||
mul_mem f1 f2 a1 a2 h1 h2 := by
|
||
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
|
||
a1 * a2 ∈ statisticSubmodule (f1 + f2)
|
||
change p a2 h2
|
||
apply Submodule.span_induction (p := p)
|
||
· intro x hx
|
||
simp only [Set.mem_setOf_eq] at hx
|
||
obtain ⟨φs, rfl, h⟩ := hx
|
||
simp only [p]
|
||
let p (a1 : 𝓕.CrAnAlgebra) (hx : a1 ∈ statisticSubmodule f1) : Prop :=
|
||
a1 * ofCrAnList φs ∈ statisticSubmodule (f1 + f2)
|
||
change p a1 h1
|
||
apply Submodule.span_induction (p := p)
|
||
· intro y hy
|
||
obtain ⟨φs', rfl, h'⟩ := hy
|
||
simp only [p]
|
||
rw [← ofCrAnList_append]
|
||
refine Submodule.mem_span.mpr fun p a => a ?_
|
||
simp only [Set.mem_setOf_eq]
|
||
use φs' ++ φs
|
||
simp only [ofList_append, h', h, true_and]
|
||
cases f1 <;> cases f2 <;> rfl
|
||
· simp [p]
|
||
· intro x y hx hy hx1 hx2
|
||
simp only [add_mul, p]
|
||
exact Submodule.add_mem _ hx1 hx2
|
||
· intro c a hx h1
|
||
simp only [Algebra.smul_mul_assoc, p]
|
||
exact Submodule.smul_mem _ _ h1
|
||
· exact h1
|
||
· simp [p]
|
||
· intro x y hx hy hx1 hx2
|
||
simp only [mul_add, p]
|
||
exact Submodule.add_mem _ hx1 hx2
|
||
· intro c a hx h1
|
||
simp only [Algebra.mul_smul_comm, p]
|
||
exact Submodule.smul_mem _ _ h1
|
||
· exact h2
|
||
decompose' a := DirectSum.of (fun i => (statisticSubmodule (𝓕 := 𝓕) i)) bosonic (bosonicProj a)
|
||
+ DirectSum.of (fun i => (statisticSubmodule (𝓕 := 𝓕) i)) fermionic (fermionicProj a)
|
||
left_inv a := by
|
||
trans a.bosonicProj + fermionicProj a
|
||
· simp
|
||
· exact bosonicProj_add_fermionicProj a
|
||
right_inv a := by
|
||
rw [coeAddMonoidHom_apply_eq_bosonic_plus_fermionic]
|
||
simp only [DFinsupp.toFun_eq_coe, map_add, bosonicProj_of_bonosic_part,
|
||
bosonicProj_of_fermionic_part, add_zero, fermionicProj_of_bosonic_part,
|
||
fermionicProj_of_fermionic_part, zero_add]
|
||
conv_rhs => rw [directSum_eq_bosonic_plus_fermionic a]
|
||
|
||
lemma eq_zero_of_bosonic_and_fermionic {a : 𝓕.CrAnAlgebra}
|
||
(hb : a ∈ statisticSubmodule bosonic) (hf : a ∈ statisticSubmodule fermionic) : a = 0 := by
|
||
have ha := bosonicProj_of_mem_bosonic a hb
|
||
have hb := fermionicProj_of_mem_fermionic a hf
|
||
have hc := (bosonicProj_add_fermionicProj a)
|
||
rw [ha, hb] at hc
|
||
simpa using hc
|
||
|
||
lemma bosonicProj_mul (a b : 𝓕.CrAnAlgebra) :
|
||
(a * b).bosonicProj.1 = a.bosonicProj.1 * b.bosonicProj.1
|
||
+ a.fermionicProj.1 * b.fermionicProj.1 := by
|
||
conv_lhs =>
|
||
rw [← bosonicProj_add_fermionicProj a]
|
||
rw [← bosonicProj_add_fermionicProj b]
|
||
simp only [mul_add, add_mul, map_add, Submodule.coe_add]
|
||
rw [bosonicProj_of_mem_bosonic]
|
||
conv_lhs =>
|
||
left
|
||
right
|
||
rw [bosonicProj_of_mem_fermionic _
|
||
(by
|
||
have h1 : fermionic = fermionic + bosonic := by simp
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
conv_lhs =>
|
||
right
|
||
left
|
||
rw [bosonicProj_of_mem_fermionic _
|
||
(by
|
||
have h1 : fermionic = bosonic + fermionic := by simp
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
conv_lhs =>
|
||
right
|
||
right
|
||
rw [bosonicProj_of_mem_bosonic _
|
||
(by
|
||
have h1 : bosonic = fermionic + fermionic := by
|
||
simp only [add_eq_mul, instCommGroup, mul_self]
|
||
rfl
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
simp only [ZeroMemClass.coe_zero, add_zero, zero_add]
|
||
· have h1 : bosonic = bosonic + bosonic := by
|
||
simp only [add_eq_mul, instCommGroup, mul_self]
|
||
rfl
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp
|
||
|
||
lemma fermionicProj_mul (a b : 𝓕.CrAnAlgebra) :
|
||
(a * b).fermionicProj.1 = a.bosonicProj.1 * b.fermionicProj.1
|
||
+ a.fermionicProj.1 * b.bosonicProj.1 := by
|
||
conv_lhs =>
|
||
rw [← bosonicProj_add_fermionicProj a]
|
||
rw [← bosonicProj_add_fermionicProj b]
|
||
simp only [mul_add, add_mul, map_add, Submodule.coe_add]
|
||
conv_lhs =>
|
||
left
|
||
left
|
||
rw [fermionicProj_of_mem_bosonic _
|
||
(by
|
||
have h1 : bosonic = bosonic + bosonic := by
|
||
simp only [add_eq_mul, instCommGroup, mul_self]
|
||
rfl
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
conv_lhs =>
|
||
left
|
||
right
|
||
rw [fermionicProj_of_mem_fermionic _
|
||
(by
|
||
have h1 : fermionic = fermionic + bosonic := by simp
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
conv_lhs =>
|
||
right
|
||
left
|
||
rw [fermionicProj_of_mem_fermionic _
|
||
(by
|
||
have h1 : fermionic = bosonic + fermionic := by simp
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
conv_lhs =>
|
||
right
|
||
right
|
||
rw [fermionicProj_of_mem_bosonic _
|
||
(by
|
||
have h1 : bosonic = fermionic + fermionic := by
|
||
simp only [add_eq_mul, instCommGroup, mul_self]
|
||
rfl
|
||
conv_lhs => rw [h1]
|
||
apply crAnAlgebraGrade.mul_mem
|
||
simp only [SetLike.coe_mem]
|
||
simp)]
|
||
simp only [ZeroMemClass.coe_zero, zero_add, add_zero]
|
||
abel
|
||
|
||
end
|
||
|
||
end CrAnAlgebra
|
||
|
||
end FieldSpecification
|