662 lines
29 KiB
Text
662 lines
29 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Wick.String
|
||
import Mathlib.Algebra.Order.Ring.Nat
|
||
import Mathlib.Data.Fintype.Sum
|
||
import Mathlib.Logic.Equiv.Fin
|
||
import HepLean.Meta.Notes.Basic
|
||
/-!
|
||
|
||
# Wick Contract
|
||
|
||
## Further reading
|
||
|
||
- https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/current/qft/handouts/qftwickstheorem.pdf
|
||
|
||
-/
|
||
|
||
namespace Wick
|
||
variable {S : Species}
|
||
/-- A Wick contraction for a Wick string is a series of pairs `i` and `j` of indices
|
||
to be contracted, subject to ordering and subject to the condition that they can
|
||
be contracted. -/
|
||
inductive WickContract : {ni : ℕ} → {i : Fin ni → S.𝓯} → {n : ℕ} → {c : Fin n → S.𝓯} →
|
||
{no : ℕ} → {o : Fin no → S.𝓯} →
|
||
(str : WickString i c o final) →
|
||
{k : ℕ} → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
|
||
| string {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯}
|
||
{str : WickString i c o final} : WickContract str Fin.elim0 Fin.elim0
|
||
| contr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ}
|
||
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n} : (i : Fin n) →
|
||
(j : Fin n) → (h : c j = S.ξ (c i)) →
|
||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||
(w : WickContract str b1 b2) →
|
||
WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)
|
||
|
||
namespace WickContract
|
||
|
||
/-- The number of nodes of a Wick contraction. -/
|
||
@[note_attr]
|
||
def size {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
WickContract str b1 b2 → ℕ := fun
|
||
| string => 0
|
||
| contr _ _ _ _ _ _ _ w => w.size + 1
|
||
|
||
/-- The number of nodes in a wick contraction tree is the same as `k`. -/
|
||
lemma size_eq_k {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
(w : WickContract str b1 b2) → w.size = k := fun
|
||
| string => rfl
|
||
| contr _ _ _ _ _ _ _ w => by
|
||
simpa [size] using w.size_eq_k
|
||
|
||
/-- The map giving the vertices on the left-hand-side of a contraction. -/
|
||
@[nolint unusedArguments]
|
||
def boundFst {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b1
|
||
|
||
@[simp]
|
||
lemma boundFst_contr_castSucc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||
(h : c j = S.ξ (c i))
|
||
(hilej : i < j)
|
||
(hb1 : ∀ r, b1 r < i)
|
||
(hb2i : ∀ r, b2 r ≠ i)
|
||
(hb2j : ∀ r, b2 r ≠ j)
|
||
(w : WickContract str b1 b2) (r : Fin k) :
|
||
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
|
||
simp only [boundFst, Fin.snoc_castSucc]
|
||
|
||
@[simp]
|
||
lemma boundFst_contr_last {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||
(h : c j = S.ξ (c i))
|
||
(hilej : i < j)
|
||
(hb1 : ∀ r, b1 r < i)
|
||
(hb2i : ∀ r, b2 r ≠ i)
|
||
(hb2j : ∀ r, b2 r ≠ j)
|
||
(w : WickContract str b1 b2) :
|
||
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
|
||
simp only [boundFst, Fin.snoc_last]
|
||
|
||
lemma boundFst_strictMono {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → StrictMono w.boundFst := fun
|
||
| string => fun k => Fin.elim0 k
|
||
| contr i j _ _ hb1 _ _ w => by
|
||
intro r s hrs
|
||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||
· obtain ⟨r, hr⟩ := hr
|
||
subst hr
|
||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||
· obtain ⟨s, hs⟩ := hs
|
||
subst hs
|
||
simp only [boundFst_contr_castSucc]
|
||
apply w.boundFst_strictMono _
|
||
simpa using hrs
|
||
· subst hs
|
||
simp only [boundFst_contr_castSucc, boundFst_contr_last]
|
||
exact hb1 r
|
||
· subst hr
|
||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||
· obtain ⟨s, hs⟩ := hs
|
||
subst hs
|
||
rw [Fin.lt_def] at hrs
|
||
simp only [Fin.val_last, Fin.coe_castSucc] at hrs
|
||
omega
|
||
· subst hs
|
||
simp at hrs
|
||
|
||
/-- The map giving the vertices on the right-hand-side of a contraction. -/
|
||
@[nolint unusedArguments]
|
||
def boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b2
|
||
|
||
@[simp]
|
||
lemma boundSnd_contr_castSucc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||
(h : c j = S.ξ (c i))
|
||
(hilej : i < j)
|
||
(hb1 : ∀ r, b1 r < i)
|
||
(hb2i : ∀ r, b2 r ≠ i)
|
||
(hb2j : ∀ r, b2 r ≠ j)
|
||
(w : WickContract str b1 b2) (r : Fin k) :
|
||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
|
||
simp only [boundSnd, Fin.snoc_castSucc]
|
||
|
||
@[simp]
|
||
lemma boundSnd_contr_last {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||
(h : c j = S.ξ (c i))
|
||
(hilej : i < j)
|
||
(hb1 : ∀ r, b1 r < i)
|
||
(hb2i : ∀ r, b2 r ≠ i)
|
||
(hb2j : ∀ r, b2 r ≠ j)
|
||
(w : WickContract str b1 b2) :
|
||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
|
||
simp only [boundSnd, Fin.snoc_last]
|
||
|
||
lemma boundSnd_injective {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
(w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
|
||
| string => by
|
||
intro i j _
|
||
exact Fin.elim0 i
|
||
| contr i j hij hilej hi h2i h2j w => by
|
||
intro r s hrs
|
||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||
· obtain ⟨r, hr⟩ := hr
|
||
subst hr
|
||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||
· obtain ⟨s, hs⟩ := hs
|
||
subst hs
|
||
simp only [boundSnd_contr_castSucc] at hrs
|
||
simpa using w.boundSnd_injective hrs
|
||
· subst hs
|
||
simp only [boundSnd_contr_castSucc, boundSnd_contr_last] at hrs
|
||
exact False.elim (h2j r hrs)
|
||
· subst hr
|
||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||
· obtain ⟨s, hs⟩ := hs
|
||
subst hs
|
||
simp only [boundSnd_contr_last, boundSnd_contr_castSucc] at hrs
|
||
exact False.elim (h2j s hrs.symm)
|
||
· subst hs
|
||
rfl
|
||
|
||
lemma color_boundSnd_eq_dual_boundFst {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
(w : WickContract str b1 b2) → (i : Fin k) → c (w.boundSnd i) = S.ξ (c (w.boundFst i)) := fun
|
||
| string => fun i => Fin.elim0 i
|
||
| contr i j hij hilej hi _ _ w => fun r => by
|
||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||
· obtain ⟨r, hr⟩ := hr
|
||
subst hr
|
||
simpa using w.color_boundSnd_eq_dual_boundFst r
|
||
· subst hr
|
||
simpa using hij
|
||
|
||
lemma boundFst_lt_boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (i : Fin k) →
|
||
w.boundFst i < w.boundSnd i := fun
|
||
| string => fun i => Fin.elim0 i
|
||
| contr i j hij hilej hi _ _ w => fun r => by
|
||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||
· obtain ⟨r, hr⟩ := hr
|
||
subst hr
|
||
simpa using w.boundFst_lt_boundSnd r
|
||
· subst hr
|
||
simp only [boundFst_contr_last, boundSnd_contr_last]
|
||
exact hilej
|
||
|
||
lemma boundFst_neq_boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
(w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
|
||
| string => fun i => Fin.elim0 i
|
||
| contr i j _ hilej h1 h2i h2j w => fun r s => by
|
||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||
· obtain ⟨r, hr⟩ := hr
|
||
obtain ⟨s, hs⟩ := hs
|
||
subst hr hs
|
||
simpa using w.boundFst_neq_boundSnd r s
|
||
· obtain ⟨r, hr⟩ := hr
|
||
subst hr hs
|
||
simp only [Fin.snoc_castSucc, Fin.snoc_last, ne_eq]
|
||
have hn := h1 r
|
||
omega
|
||
· obtain ⟨s, hs⟩ := hs
|
||
subst hr hs
|
||
simp only [Fin.snoc_last, Fin.snoc_castSucc, ne_eq]
|
||
exact (h2i s).symm
|
||
· subst hr hs
|
||
simp only [Fin.snoc_last, ne_eq]
|
||
omega
|
||
|
||
/-- Casts a Wick contraction from `WickContract str b1 b2` to `WickContract str b1' b2'` with a
|
||
proof that `b1 = b1'` and `b2 = b2'`, and that they are defined from the same `k = k'`. -/
|
||
def castMaps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k k' : ℕ} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
|
||
(hk : k = k')
|
||
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract str b1 b2) :
|
||
WickContract str b1' b2' :=
|
||
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
|
||
|
||
@[simp]
|
||
lemma castMaps_rfl {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||
castMaps rfl rfl rfl w = w := rfl
|
||
|
||
lemma mem_snoc' {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1' b2' : Fin k → Fin n} :
|
||
(w : WickContract str b1' b2') →
|
||
{k' : ℕ} → (hk' : k'.succ = k) →
|
||
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = S.ξ (c i)) →
|
||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2'
|
||
(contr i j h hilej hb1 hb2i hb2j w') := fun
|
||
| string => fun hk' => by
|
||
simp at hk'
|
||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
|
||
rename_i k' k b1' b2' f
|
||
have hk2 : k' = k := Nat.succ_inj'.mp hk
|
||
subst hk2
|
||
simp_all
|
||
have hb2'' : b2 = b2' := by
|
||
funext k
|
||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
|
||
· simp
|
||
· rw [hb2']
|
||
simp
|
||
have hb1'' : b1 = b1' := by
|
||
funext k
|
||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
|
||
· simp
|
||
· rw [hb1']
|
||
simp
|
||
have hi : i = i' := by
|
||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
|
||
· simp
|
||
· rw [hb1']
|
||
simp
|
||
have hj : j = j' := by
|
||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
|
||
· simp
|
||
· rw [hb2']
|
||
simp
|
||
subst hb1'' hb2'' hi hj
|
||
simp
|
||
|
||
lemma mem_snoc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(i j : Fin n) (h : c j = S.ξ (c i)) (hilej : i < j) (hb1 : ∀ r, b1 r < i)
|
||
(hb2i : ∀ r, b2 r ≠ i) (hb2j : ∀ r, b2 r ≠ j)
|
||
(w : WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)) :
|
||
∃ (w' : WickContract str b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
|
||
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
|
||
|
||
lemma is_subsingleton {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||
Subsingleton (WickContract str b1 b2) := Subsingleton.intro fun w1 w2 => by
|
||
induction k with
|
||
| zero =>
|
||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||
subst hb1 hb2
|
||
match w1, w2 with
|
||
| string, string => rfl
|
||
| succ k hI =>
|
||
match w1, w2 with
|
||
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
|
||
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
|
||
rw [hw']
|
||
apply congrArg (contr i j _ _ _ _ _) (hI w w')
|
||
|
||
lemma eq_snoc_castSucc {k n : ℕ} (b1 : Fin k.succ → Fin n) :
|
||
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
|
||
funext i
|
||
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
|
||
· obtain ⟨i, rfl⟩ := h1
|
||
simp
|
||
· subst h1
|
||
simp
|
||
|
||
/-- The construction of a Wick contraction from maps `b1 b2 : Fin k → Fin n`, with the former
|
||
giving the first index to be contracted, and the latter the second index. These
|
||
maps must satisfy a series of conditions. -/
|
||
def fromMaps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} (b1 b2 : Fin k → Fin n)
|
||
(hi : ∀ i, c (b2 i) = S.ξ (c (b1 i)))
|
||
(hb1ltb2 : ∀ i, b1 i < b2 i)
|
||
(hb1 : StrictMono b1)
|
||
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
|
||
(hb2 : Function.Injective b2) :
|
||
WickContract str b1 b2 := by
|
||
match k with
|
||
| 0 =>
|
||
refine castMaps ?_ ?_ ?_ string
|
||
· rfl
|
||
· exact funext (fun i => Fin.elim0 i)
|
||
· exact funext (fun i => Fin.elim0 i)
|
||
| Nat.succ k =>
|
||
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||
(hi (Fin.last k))
|
||
(hb1ltb2 (Fin.last k))
|
||
(fun r => hb1 (Fin.castSucc_lt_last r))
|
||
(fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm)
|
||
(fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||
(fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
|
||
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
|
||
?_ ?_))
|
||
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
|
||
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
|
||
|
||
/-- Given a Wick contraction with `k.succ` contractions, returns the Wick contraction with
|
||
`k` contractions by dropping the last contraction (defined by the first index contracted). -/
|
||
def dropLast {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n}
|
||
(w : WickContract str b1 b2) : WickContract str (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) :=
|
||
fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc)
|
||
(fun i => color_boundSnd_eq_dual_boundFst w i.castSucc)
|
||
(fun i => boundFst_lt_boundSnd w i.castSucc)
|
||
(StrictMono.comp w.boundFst_strictMono Fin.strictMono_castSucc)
|
||
(fun r1 r2 => boundFst_neq_boundSnd w r1.castSucc r2.castSucc)
|
||
(Function.Injective.comp w.boundSnd_injective (Fin.castSucc_injective k))
|
||
|
||
lemma eq_from_maps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) :
|
||
w = fromMaps w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
|
||
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd
|
||
w.boundSnd_injective := is_subsingleton.allEq w _
|
||
|
||
lemma eq_dropLast_contr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
|
||
w = castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||
(w.color_boundSnd_eq_dual_boundFst (Fin.last k))
|
||
(w.boundFst_lt_boundSnd (Fin.last k))
|
||
(fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r))
|
||
(fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm)
|
||
(fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||
(dropLast w)) := by
|
||
rw [eq_from_maps w]
|
||
rfl
|
||
|
||
/-- Wick contractions of a given Wick string with `k` different contractions. -/
|
||
def Level {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) (k : ℕ) : Type :=
|
||
Σ (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract str b1 b2
|
||
|
||
/-- There is a finite number of Wick contractions with no contractions. In particular,
|
||
this is just the original Wick string. -/
|
||
instance levelZeroFintype {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) :
|
||
Fintype (Level str 0) where
|
||
elems := {⟨Fin.elim0, Fin.elim0, WickContract.string⟩}
|
||
complete := by
|
||
intro x
|
||
match x with
|
||
| ⟨b1, b2, w⟩ =>
|
||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||
subst hb1 hb2
|
||
simp only [Finset.mem_singleton]
|
||
rw [is_subsingleton.allEq w string]
|
||
|
||
/-- The pairs of additional indices which can be contracted given a Wick contraction. -/
|
||
structure ContrPair {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) where
|
||
/-- The first index in the contraction pair. -/
|
||
i : Fin n
|
||
/-- The second index in the contraction pair. -/
|
||
j : Fin n
|
||
h : c j = S.ξ (c i)
|
||
hilej : i < j
|
||
hb1 : ∀ r, b1 r < i
|
||
hb2i : ∀ r, b2 r ≠ i
|
||
hb2j : ∀ r, b2 r ≠ j
|
||
|
||
/-- The pairs of additional indices which can be contracted, given an existing wick contraction,
|
||
is equivalent to the a subtype of `Fin n × Fin n` defined by certain conditions equivalent
|
||
to the conditions appearing in `ContrPair`. -/
|
||
def contrPairEquivSubtype {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||
ContrPair w ≃ {x : Fin n × Fin n // c x.2 = S.ξ (c x.1) ∧ x.1 < x.2 ∧
|
||
(∀ r, b1 r < x.1) ∧ (∀ r, b2 r ≠ x.1) ∧ (∀ r, b2 r ≠ x.2)} where
|
||
toFun cp := ⟨⟨cp.i, cp.j⟩, ⟨cp.h, cp.hilej, cp.hb1, cp.hb2i, cp.hb2j⟩⟩
|
||
invFun x :=
|
||
match x with
|
||
| ⟨⟨i, j⟩, ⟨h, hilej, hb1, hb2i, hb2j⟩⟩ => ⟨i, j, h, hilej, hb1, hb2i, hb2j⟩
|
||
left_inv x := by rfl
|
||
right_inv x := by
|
||
simp_all only [ne_eq]
|
||
obtain ⟨val, property⟩ := x
|
||
obtain ⟨fst, snd⟩ := val
|
||
obtain ⟨left, right⟩ := property
|
||
obtain ⟨left_1, right⟩ := right
|
||
obtain ⟨left_2, right⟩ := right
|
||
obtain ⟨left_3, right⟩ := right
|
||
simp_all only [ne_eq]
|
||
|
||
lemma heq_eq {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 b1' b2' : Fin k → Fin n}
|
||
(w : WickContract str b1 b2)
|
||
(w' : WickContract str b1' b2') (h1 : b1 = b1') (h2 : b2 = b2') : HEq w w':= by
|
||
subst h1 h2
|
||
simp only [heq_eq_eq]
|
||
exact is_subsingleton.allEq w w'
|
||
|
||
/-- The equivalence between Wick contractions consisting of `k.succ` contractions and
|
||
those with `k` contractions paired with a suitable contraction pair. -/
|
||
def levelSuccEquiv {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) (k : ℕ) :
|
||
Level str k.succ ≃ (w : Level str k) × ContrPair w.2.2 where
|
||
toFun w :=
|
||
match w with
|
||
| ⟨b1, b2, w⟩ =>
|
||
⟨⟨b1 ∘ Fin.castSucc, b2 ∘ Fin.castSucc, dropLast w⟩,
|
||
⟨b1 (Fin.last k), b2 (Fin.last k),
|
||
w.color_boundSnd_eq_dual_boundFst (Fin.last k),
|
||
w.boundFst_lt_boundSnd (Fin.last k),
|
||
fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r),
|
||
fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm,
|
||
fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r))⟩⟩
|
||
invFun w :=
|
||
match w with
|
||
| ⟨⟨b1, b2, w⟩, cp⟩ => ⟨Fin.snoc b1 cp.i, Fin.snoc b2 cp.j,
|
||
contr cp.i cp.j cp.h cp.hilej cp.hb1 cp.hb2i cp.hb2j w⟩
|
||
left_inv w := by
|
||
match w with
|
||
| ⟨b1, b2, w⟩ =>
|
||
simp only [Nat.succ_eq_add_one, Function.comp_apply]
|
||
congr
|
||
· exact Eq.symm (eq_snoc_castSucc b1)
|
||
· funext b2
|
||
congr
|
||
exact Eq.symm (eq_snoc_castSucc b1)
|
||
· exact Eq.symm (eq_snoc_castSucc b2)
|
||
· rw [eq_dropLast_contr w]
|
||
simp only [castMaps, Nat.succ_eq_add_one, cast_eq, heq_eqRec_iff_heq, heq_eq_eq,
|
||
contr.injEq]
|
||
rfl
|
||
right_inv w := by
|
||
match w with
|
||
| ⟨⟨b1, b2, w⟩, cp⟩ =>
|
||
simp only [Nat.succ_eq_add_one, Fin.snoc_last, Sigma.mk.inj_iff]
|
||
apply And.intro
|
||
· congr
|
||
· exact Fin.snoc_comp_castSucc
|
||
· funext b2
|
||
congr
|
||
exact Fin.snoc_comp_castSucc
|
||
· exact Fin.snoc_comp_castSucc
|
||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||
· congr
|
||
· exact Fin.snoc_comp_castSucc
|
||
· exact Fin.snoc_comp_castSucc
|
||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||
· simp
|
||
· simp
|
||
· simp
|
||
|
||
/-- The sum of `boundFst` and `boundSnd`, giving on `Sum.inl k` the first index
|
||
in the `k`th contraction, and on `Sum.inr k` the second index in the `k`th contraction. -/
|
||
def bound {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : Fin k ⊕ Fin k → Fin n :=
|
||
Sum.elim w.boundFst w.boundSnd
|
||
|
||
/-- On `Sum.inl k` the map `bound` acts via `boundFst`. -/
|
||
@[simp]
|
||
lemma bound_inl {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inl i) = w.boundFst i := rfl
|
||
|
||
/-- On `Sum.inr k` the map `bound` acts via `boundSnd`. -/
|
||
@[simp]
|
||
lemma bound_inr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inr i) = w.boundSnd i := rfl
|
||
|
||
lemma bound_injection {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : Function.Injective w.bound := by
|
||
intro x y h
|
||
match x, y with
|
||
| Sum.inl x, Sum.inl y =>
|
||
simp only [bound_inl] at h
|
||
simpa using (StrictMono.injective w.boundFst_strictMono).eq_iff.mp h
|
||
| Sum.inr x, Sum.inr y =>
|
||
simp only [bound_inr] at h
|
||
simpa using w.boundSnd_injective h
|
||
| Sum.inl x, Sum.inr y =>
|
||
simp only [bound_inl, bound_inr] at h
|
||
exact False.elim (w.boundFst_neq_boundSnd x y h)
|
||
| Sum.inr x, Sum.inl y =>
|
||
simp only [bound_inr, bound_inl] at h
|
||
exact False.elim (w.boundFst_neq_boundSnd y x h.symm)
|
||
|
||
lemma bound_le_total {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : 2 * k ≤ n := by
|
||
refine Fin.nonempty_embedding_iff.mp ⟨w.bound ∘ finSumFinEquiv.symm ∘ Fin.cast (Nat.two_mul k),
|
||
?_⟩
|
||
apply Function.Injective.comp (Function.Injective.comp _ finSumFinEquiv.symm.injective)
|
||
· exact Fin.cast_injective (Nat.two_mul k)
|
||
· exact bound_injection w
|
||
|
||
/-- The list of fields (indexed by `Fin n`) in a Wick contraction which are not bound,
|
||
i.e. which do not appear in any contraction. -/
|
||
def unboundList {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : List (Fin n) :=
|
||
List.filter (fun i => decide (∀ r, w.bound r ≠ i)) (List.finRange n)
|
||
|
||
/-- THe list of field positions which are not contracted has no duplicates. -/
|
||
lemma unboundList_nodup {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : (w.unboundList).Nodup :=
|
||
List.Nodup.filter _ (List.nodup_finRange n)
|
||
|
||
/-- The length of the `unboundList` is equal to `n - 2 * k`. That is
|
||
the total number of fields minus the number of contracted fields. -/
|
||
lemma unboundList_length {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||
w.unboundList.length = n - 2 * k := by
|
||
rw [← List.Nodup.dedup w.unboundList_nodup]
|
||
rw [← List.card_toFinset, unboundList]
|
||
rw [List.toFinset_filter, List.toFinset_finRange]
|
||
have hn := Finset.filter_card_add_filter_neg_card_eq_card (s := Finset.univ)
|
||
(fun (i : Fin n) => i ∈ Finset.image w.bound Finset.univ)
|
||
have hn' :(Finset.filter (fun i => i ∈ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||
(Finset.image w.bound Finset.univ).card := by
|
||
refine Finset.card_equiv (Equiv.refl _) fun i => ?_
|
||
simp
|
||
rw [hn'] at hn
|
||
rw [Finset.card_image_of_injective] at hn
|
||
simp only [Finset.card_univ, Fintype.card_sum, Fintype.card_fin,
|
||
Finset.mem_univ, true_and, Sum.exists, bound_inl, bound_inr, not_or, not_exists] at hn
|
||
have hn'' : (Finset.filter (fun a => a ∉ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||
n - 2 * k := by
|
||
omega
|
||
rw [← hn'']
|
||
congr
|
||
funext x
|
||
simp only [ne_eq, Sum.forall, bound_inl, bound_inr, Bool.decide_and, Bool.and_eq_true,
|
||
decide_eq_true_eq, Finset.mem_image, Finset.mem_univ, true_and, Sum.exists, not_or, not_exists]
|
||
exact bound_injection w
|
||
|
||
lemma unboundList_sorted {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||
List.Sorted (fun i j => i < j) w.unboundList :=
|
||
List.Pairwise.sublist (List.filter_sublist (List.finRange n)) (List.pairwise_lt_finRange n)
|
||
|
||
/-- The ordered embedding giving the fields which are not bound in a contraction. These
|
||
are the fields that will appear in a normal operator in Wick's theorem. -/
|
||
def unbound {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||
(w : WickContract str b1 b2) : Fin (n - 2 * k) ↪o Fin n where
|
||
toFun := w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
|
||
inj' := by
|
||
apply Function.Injective.comp
|
||
· rw [← List.nodup_iff_injective_get]
|
||
exact w.unboundList_nodup
|
||
· exact Fin.cast_injective _
|
||
map_rel_iff' := by
|
||
refine fun {a b} => StrictMono.le_iff_le ?_
|
||
rw [Function.Embedding.coeFn_mk]
|
||
apply StrictMono.comp
|
||
· exact List.Sorted.get_strictMono w.unboundList_sorted
|
||
· exact fun ⦃a b⦄ a => a
|
||
|
||
informal_lemma level_fintype where
|
||
math :≈ "Level is a finite type, as there are only finitely many ways to contract a Wick string."
|
||
deps :≈ [``Level]
|
||
|
||
informal_definition HasEqualTimeContractions where
|
||
math :≈ "The condition for a Wick contraction to have two fields contracted
|
||
which are of equal time, i.e. come from the same vertex."
|
||
deps :≈ [``WickContract]
|
||
|
||
informal_definition IsConnected where
|
||
math :≈ "The condition for a full Wick contraction that for any two vertices
|
||
(including external vertices) are connected by contractions."
|
||
deps :≈ [``WickContract]
|
||
|
||
informal_definition HasVacuumContributions where
|
||
math :≈ "The condition for a full Wick contraction to have a vacuum contribution."
|
||
deps :≈ [``WickContract]
|
||
|
||
informal_definition IsOneParticleIrreducible where
|
||
math :≈ "The condition for a full Wick contraction to be one-particle irreducible."
|
||
deps :≈ [``WickContract]
|
||
|
||
end WickContract
|
||
|
||
end Wick
|