191 lines
7 KiB
Text
191 lines
7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basic
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
|
||
/-!
|
||
|
||
## Bispinors
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
open Fermion
|
||
noncomputable section
|
||
namespace complexLorentzTensor
|
||
open Lorentz
|
||
|
||
/-!
|
||
|
||
## Definitions
|
||
|
||
-/
|
||
|
||
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
|
||
def contrBispinorUp (p : complexContr) :=
|
||
{pauliCo | μ α β ⊗ p | μ}ᵀ.tensor
|
||
|
||
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
||
def contrBispinorDown (p : complexContr) :=
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||
contrBispinorUp p | α β}ᵀ.tensor
|
||
|
||
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p_μ`. -/
|
||
def coBispinorUp (p : complexCo) :=
|
||
{pauliContr | μ α β ⊗ p | μ}ᵀ.tensor
|
||
|
||
/-- A bispinor `pₐₐ` created from a lorentz vector `p_μ`. -/
|
||
def coBispinorDown (p : complexCo) :=
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||
coBispinorUp p | α β}ᵀ.tensor
|
||
|
||
/-!
|
||
|
||
## Tensor nodes
|
||
|
||
-/
|
||
|
||
/-- The definitional tensor node relation for `contrBispinorUp`. -/
|
||
lemma tensorNode_contrBispinorUp (p : complexContr) :
|
||
{contrBispinorUp p | α β}ᵀ.tensor = {pauliCo | μ α β ⊗ p | μ}ᵀ.tensor := by
|
||
rw [contrBispinorUp, tensorNode_tensor]
|
||
|
||
/-- The definitional tensor node relation for `contrBispinorDown`. -/
|
||
lemma tensorNode_contrBispinorDown (p : complexContr) :
|
||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
|
||
⊗ contrBispinorUp p | α β}ᵀ.tensor := by
|
||
rw [contrBispinorDown, tensorNode_tensor]
|
||
|
||
/-- The definitional tensor node relation for `coBispinorUp`. -/
|
||
lemma tensorNode_coBispinorUp (p : complexCo) :
|
||
{coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
|
||
rw [coBispinorUp, tensorNode_tensor]
|
||
|
||
/-- The definitional tensor node relation for `coBispinorDown`. -/
|
||
lemma tensorNode_coBispinorDown (p : complexCo) :
|
||
{coBispinorDown p | α β}ᵀ.tensor =
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
|
||
⊗ coBispinorUp p | α β}ᵀ.tensor := by
|
||
rw [coBispinorDown, tensorNode_tensor]
|
||
|
||
/-!
|
||
|
||
## Basic equalities.
|
||
|
||
-/
|
||
|
||
lemma contrBispinorDown_expand (p : complexContr) :
|
||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||
rw [tensorNode_contrBispinorDown p]
|
||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||
|
||
lemma coBispinorDown_expand (p : complexCo) :
|
||
{coBispinorDown p | α β}ᵀ.tensor =
|
||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||
rw [tensorNode_coBispinorDown p]
|
||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
|
||
|
||
set_option maxRecDepth 5000 in
|
||
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||
conv =>
|
||
rhs
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||
pauliCoDown_eq_metric_mul_pauliCo]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||
perm_eq_id _ rfl _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||
prod_assoc' _ _ _ _ _ _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
conv =>
|
||
lhs
|
||
rw [contrBispinorDown_expand p]
|
||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _]
|
||
rw [contr_tensor_eq <| perm_contr_congr 0 3]
|
||
rw [perm_contr_congr 1 2]
|
||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_contr _ _ _).trans
|
||
rw [perm_tensor_eq <| perm_contr _ _]
|
||
rw [perm_perm]
|
||
rw [perm_tensor_eq <| contr_contr _ _ _]
|
||
rw [perm_perm]
|
||
apply perm_congr _ rfl
|
||
decide
|
||
|
||
set_option maxRecDepth 5000 in
|
||
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
|
||
conv =>
|
||
rhs
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||
pauliContrDown_eq_metric_mul_pauliContr]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||
perm_eq_id _ rfl _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||
prod_assoc' _ _ _ _ _ _]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||
rw [perm_perm]
|
||
conv =>
|
||
lhs
|
||
rw [coBispinorDown_expand p]
|
||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _]
|
||
rw [contr_tensor_eq <| perm_contr_congr 0 3]
|
||
rw [perm_contr_congr 1 2]
|
||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_contr _ _ _).trans
|
||
rw [perm_tensor_eq <| perm_contr _ _]
|
||
rw [perm_perm]
|
||
rw [perm_tensor_eq <| contr_contr _ _ _]
|
||
rw [perm_perm]
|
||
apply perm_congr _ rfl
|
||
decide
|
||
|
||
end complexLorentzTensor
|
||
end
|