105 lines
3.5 KiB
Text
105 lines
3.5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.ComplexLorentz.Basis
|
||
/-!
|
||
|
||
## Lemmas related to complex Lorentz tensors.
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace complexLorentzTensor
|
||
open Fermion
|
||
set_option maxRecDepth 20000 in
|
||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rw [(contr_tensor_eq (contr_swap _ _))]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_swap _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· rfl
|
||
· apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
|
||
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
|
||
rw [perm_tensor_eq contr_rank_2_symm]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
set_option maxRecDepth 20000 in
|
||
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
|
||
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
|
||
have h1 {M : Type} [AddCommGroup M] [Module ℂ M] {x : M} (h : x = - x) : x = 0 := by
|
||
rw [eq_neg_iff_add_eq_zero, ← two_smul ℂ x] at h
|
||
simpa using h
|
||
refine h1 ?_
|
||
rw [← neg_tensor]
|
||
rw [neg_perm] at hA
|
||
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
|
||
nth_rewrite 1 [(contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_snd hs)))]
|
||
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
|
||
rw [contr_tensor_eq (neg_contr _)]
|
||
rw [neg_contr]
|
||
rw [neg_tensor]
|
||
apply congrArg
|
||
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
|
||
rw [contr_tensor_eq (perm_contr _ _)]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· rfl
|
||
|
||
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
|
||
rw [contr_rank_2_symm', perm_tensor, antiSymm_contr_symm hA hs]
|
||
rfl
|
||
|
||
lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) :
|
||
{A | μ ν + A | ν μ}ᵀ.tensor = 0 := by
|
||
rw [← TensorTree.add_neg (twoNodeE complexLorentzTensor Color.up Color.up A)]
|
||
apply TensorTree.add_tensor_eq_snd
|
||
rw [neg_tensor_eq hA, neg_tensor_eq (neg_perm _ _), neg_neg]
|
||
|
||
end complexLorentzTensor
|
||
|
||
end
|