79 lines
3.3 KiB
Text
79 lines
3.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.ComplexLorentz.Metrics.Basis
|
||
import HepLean.Tensors.ComplexLorentz.Basis
|
||
/-!
|
||
|
||
## Metrics and basis expansions
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace complexLorentzTensor
|
||
|
||
/-- The map to color one gets when multiplying left and right metrics. -/
|
||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||
finSumFinEquiv.symm
|
||
|
||
lemma leftMetric_mul_rightMetric : {εL | α α' ⊗ εR | β β'}ᵀ.tensor
|
||
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||
- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||
rw [prod_tensor_eq_fst (leftMetric_expand_tree)]
|
||
rw [prod_tensor_eq_snd (rightMetric_expand_tree)]
|
||
rw [prod_add_both]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
|
||
rw [← add_assoc]
|
||
simp only [add_tensor, smul_tensor, tensorNode_tensor]
|
||
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
congr
|
||
funext x
|
||
fin_cases x <;> rfl
|
||
|
||
lemma leftMetric_mul_rightMetric_tree :
|
||
{εL | α α' ⊗ εR | β β'}ᵀ.tensor
|
||
= (TensorTree.add (tensorNode
|
||
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <|
|
||
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <|
|
||
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <|
|
||
(tensorNode
|
||
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by
|
||
rw [leftMetric_mul_rightMetric]
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
||
smul_tensor, neg_smul, one_smul]
|
||
rfl
|
||
|
||
end complexLorentzTensor
|