PhysLean/HepLean/Tensors/ComplexLorentz/PauliMatrices/Basic.lean
2024-10-29 13:46:18 +00:00

243 lines
8.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ProdContr
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.Congr
import HepLean.Tensors.ComplexLorentz.Metrics.Lemmas
/-!
## Pauli matrices as complex Lorentz tensors
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace complexLorentzTensor
open Fermion
/-!
## Definitions.
-/
/-- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
def pauliCo := {η' | μ ν ⊗ pauliContr | ν α β}ᵀ.tensor
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ_α_{dot β}`. -/
def pauliCoDown := {pauliCo | μ α β ⊗ εL' | α α' ⊗ εR' | β β'}ᵀ.tensor
/-- The Pauli matrices as the complex Lorentz tensor `σ^μ_α_{dot β}`. -/
def pauliContrDown := {pauliContr | μ α β ⊗ εL' | α α' ⊗ εR' | β β'}ᵀ.tensor
/-!
## Tensor nodes.
-/
/-- The definitional tensor node relation for `pauliContr`. -/
lemma tensorNode_pauliContr : {pauliContr | μ α β}ᵀ.tensor =
{PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
rfl
/-- The definitional tensor node relation for `pauliCo`. -/
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
{η' | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
rfl
/-- The definitional tensor node relation for `pauliCoDown`. -/
lemma tensorNode_pauliCoDown : {pauliCoDown | μ α β}ᵀ.tensor =
{pauliCo | μ α β ⊗ εL' | α α' ⊗ εR' | β β'}ᵀ.tensor := by
rfl
/-- The definitional tensor node relation for `pauliContrDown`. -/
lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor =
{pauliContr | μ α β ⊗ εL' | α α' ⊗ εR' | β β'}ᵀ.tensor := by
rfl
/-!
## Basic equalities
-/
set_option maxRecDepth 5000 in
/-- A rearanging of `pauliCoDown` to place the pauli matrices on the right. -/
lemma pauliCoDown_eq_metric_mul_pauliCo :
{pauliCoDown | μ α' β' = εL' | α α' ⊗ εR' | β β' ⊗ pauliCo | μ α β}ᵀ := by
conv =>
lhs
rw [tensorNode_pauliCoDown]
rw [contr_tensor_eq <| contr_prod _ _ _]
rw [perm_contr]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_congr 1 2]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 1 2]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
conv =>
rhs
rw [perm_tensor_eq <| contr_swap _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_swap _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
apply perm_congr _ rfl
decide
set_option maxRecDepth 5000 in
/-- A rearanging of `pauliContrDown` to place the pauli matrices on the right. -/
lemma pauliContrDown_eq_metric_mul_pauliContr :
{pauliContrDown | μ α' β' = εL' | α α' ⊗
εR' | β β' ⊗ pauliContr | μ α β}ᵀ := by
conv =>
lhs
rw [tensorNode_pauliContrDown]
rw [contr_tensor_eq <| contr_prod _ _ _]
rw [perm_contr]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_congr 1 2]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 1 2]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
conv =>
rhs
rw [perm_tensor_eq <| contr_swap _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_swap _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 4 1]
rw [perm_perm]
apply perm_congr _ rfl
decide
/-!
## Group actions
-/
/-- The tensor `pauliContr` is invariant under the action of `SL(2,)`. -/
lemma action_pauliContr (g : SL(2,)) : {g •ₐ pauliContr | μ α β}ᵀ.tensor =
{pauliContr | μ α β}ᵀ.tensor := by
rw [tensorNode_pauliContr, constThreeNodeE]
rw [← action_constThreeNode _ g]
rfl
/-- The tensor `pauliCo` is invariant under the action of `SL(2,)`. -/
lemma action_pauliCo (g : SL(2,)) : {g •ₐ pauliCo | μ α β}ᵀ.tensor =
{pauliCo | μ α β}ᵀ.tensor := by
conv =>
lhs
rw [action_tensor_eq <| tensorNode_pauliCo]
rw [(contr_action _ _).symm]
rw [contr_tensor_eq <| (prod_action _ _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| action_constTwoNode _ _]
rw [contr_tensor_eq <| prod_tensor_eq_snd <| action_constThreeNode _ _]
rfl
/-- The tensor `pauliCoDown` is invariant under the action of `SL(2,)`. -/
lemma action_pauliCoDown (g : SL(2,)) : {g •ₐ pauliCoDown | μ α β}ᵀ.tensor =
{pauliCoDown | μ α β}ᵀ.tensor := by
conv =>
lhs
rw [action_tensor_eq <| tensorNode_pauliCoDown]
rw [(contr_action _ _).symm]
rw [contr_tensor_eq <| (prod_action _ _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| (contr_action _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| (prod_action _ _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| prod_tensor_eq_fst <|
action_pauliCo _]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| prod_tensor_eq_snd <|
action_constTwoNode _ _]
erw [contr_tensor_eq <| prod_tensor_eq_snd <| action_constTwoNode _ _]
rfl
/-- The tensor `pauliContrDown` is invariant under the action of `SL(2,)`. -/
lemma action_pauliContrDown (g : SL(2,)) : {g •ₐ pauliContrDown | μ α β}ᵀ.tensor =
{pauliContrDown | μ α β}ᵀ.tensor := by
conv =>
lhs
rw [action_tensor_eq <| tensorNode_pauliContrDown]
rw [(contr_action _ _).symm]
rw [contr_tensor_eq <| (prod_action _ _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| (contr_action _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| (prod_action _ _ _).symm]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| prod_tensor_eq_fst <|
action_pauliContr _]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| contr_tensor_eq <| prod_tensor_eq_snd <|
action_constTwoNode _ _]
erw [contr_tensor_eq <| prod_tensor_eq_snd <| action_constTwoNode _ _]
rfl
end complexLorentzTensor