PhysLean/HepLean/Tensors/ComplexLorentz/PauliMatrices/Basis.lean
2024-10-29 11:23:08 +00:00

632 lines
28 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basic
import HepLean.Tensors.ComplexLorentz.Basis
/-!
## Pauli matrices and the basis of complex Lorentz tensors
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace complexLorentzTensor
open Fermion
/-!
## Expanding pauliContr in a basis.
-/
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
lemma pauliContr_in_basis : {pauliContr | μ α β}ᵀ.tensor =
basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0)
- I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0)
- basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [tensorNode_pauliContr]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand]
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V,
Fin.isValue, map_sub, map_add, _root_.map_smul]
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
all_goals
erw [tripleIsoSep_tmul, basisVector]
apply congrArg
try apply congrArg
funext i
match i with
| (0 : Fin 3) =>
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
| (1 : Fin 3) => rfl
| (2 : Fin 3) => rfl
lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor =
(TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
TensorTree.add (smul (-I) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (smul I (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
(smul (-1) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
rw [pauliContr_in_basis]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
smul_tensor, neg_smul, one_smul]
rfl
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(TensorTree.prod t (tensorNode pauliContr)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
(TensorTree.smul (-1) (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliContr_basis_expand_tree]
rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) =
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t (tensorNode pauliContr))).tensor =
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) (contr i j h ((tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [contr_pauliMatrix_basis_tree_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
/-- The map to color which appears when contracting a basis vector with
puali matrices. -/
def pauliMatrixBasisProdMap
{n : } {c : Fin n → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
(i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
/-- The new basis vectors which appear when contracting pauli matrices with
basis vectors. -/
def basisVectorContrPauli {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(i1 i2 i3 : Fin 4) :=
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
(i.succAbove (j.succAbove k))
basisVector c' (b' i1 i2 i3)
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
(i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor =
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0))
(tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1))
(tensorNode (basisVector c' (b' 0 1 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1))
(tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
(tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
(tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
(tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
(tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand']
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _]
rfl
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor =
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
(basisVectorContrPauli i j b 0 0 0)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
(basisVectorContrPauli i j b 0 1 1)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
(basisVectorContrPauli i j b 1 0 1)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
(basisVectorContrPauli i j b 1 1 0)
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
(basisVectorContrPauli i j b 2 0 1)
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
(basisVectorContrPauli i j b 2 1 0)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
(basisVectorContrPauli i j b 3 0 0)
+ (-1 : ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
(basisVectorContrPauli i j b 3 1 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg]
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
rfl
/-!
## Expanding pauliCo in a basis.
-/
/-- The map to color one gets when lowering the indices of pauli matrices. -/
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
lemma pauliMatrix_contr_down_0 :
(contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(tensorNode pauliContr)))).tensor
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1 :
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
pauliContr | μ α β}ᵀ.tensor
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2 :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
pauliContr | ν α β}ᵀ.tensor
= (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 2
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3 :
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
pauliContr | ν α β}ᵀ.tensor
= basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
congr 1
funext k
fin_cases k <;> rfl
lemma pauliCo_basis_expand : pauliCo
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
+ I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
- I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
- basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [pauliCo]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
simp only [tensorNode_tensor, add_tensor, smul_tensor]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
conv =>
lhs; lhs;
rw [pauliMatrix_contr_down_0]
conv =>
lhs; rhs; lhs; rhs;
rw [pauliMatrix_contr_down_1]
conv =>
lhs; rhs; rhs; lhs; rhs;
rw [pauliMatrix_contr_down_2]
conv =>
lhs; rhs; rhs; rhs; rhs;
rw [pauliMatrix_contr_down_3]
simp only [neg_smul, one_smul]
abel
lemma pauliCo_basis_expand_tree : {pauliCo | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul I (tensorNode
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-I) (tensorNode
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
(tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
rw [pauliCo_basis_expand]
simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul,
one_smul]
rfl
lemma pauliCo_prod_basis_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(prod (tensorNode pauliCo) t).tensor =
(((tensorNode
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(((tensorNode
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul I ((tensorNode
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-I) ((tensorNode
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
((tensorNode
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
t)))))))).tensor := by
rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree]
/- Moving the prod through additions. -/
rw [add_prod _ _ _]
rw [add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
end complexLorentzTensor