PhysLean/HepLean/AnomalyCancellation/SM/Permutations.lean
2024-11-27 14:35:02 +00:00

115 lines
4.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SM.Basic
import Mathlib.Tactic.Polyrith
import Mathlib.RepresentationTheory.Basic
/-!
# Permutations of SM with no RHN.
We define the group of permutations for the SM charges with no RHN.
-/
universe v u
open Nat
open Finset
namespace SM
open SMCharges
open SMACCs
open BigOperators
/-- The group of `Sₙ` permutations for each species. -/
@[simp]
def PermGroup (n : ) := ∀ (_ : Fin 5), Equiv.Perm (Fin n)
variable {n : }
/-- The type `PermGroup n` inherits the instance of a group from it's
target space `Equiv.Perm`. -/
@[simp]
instance : Group (PermGroup n) := Pi.group
/-- The image of an element of `permGroup n` under the representation on charges. -/
@[simps!]
def chargeMap (f : PermGroup n) : (SMCharges n).Charges →ₗ[] (SMCharges n).Charges where
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i)
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
@[simp]
def repCharges {n : } : Representation (PermGroup n) (SMCharges n).Charges where
toFun f := chargeMap f⁻¹
map_mul' f g := by
simp only [PermGroup, mul_inv_rev]
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
simp only [chargeMap_apply, Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
map_one' := by
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
erw [toSMSpecies_toSpecies_inv]
rfl
/-- The species chages of a set of charges acted on by a family permutation is the permutation
of those species charges with the corresponding part of the family permutation. -/
lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
/-- The sum over every charge in any species to some power `m` is invariant under the group
action. -/
lemma toSpecies_sum_invariant (m : ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
rw [repCharges_toSpecies]
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
/-- The gravitional anomaly equations is invariant under family permutations. -/
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accGrav (repCharges f S) = accGrav S := accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `SU(2)` anomaly equation is invariant under family permutations. -/
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU2 (repCharges f S) = accSU2 S := accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `SU(3)` anomaly equation is invariant under family permutations. -/
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The `Y²` anomaly equation is invariant under family permutations. -/
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
/-- The quadratic anomaly equation is invariant under family permutations. -/
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
/-- The cubic anomaly equation is invariant under family permutations. -/
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext (fun j => toSpecies_sum_invariant 3 f S j)
end SM