PhysLean/HepLean/BeyondTheStandardModel/TwoHDM/Basic.lean
2024-07-12 11:23:02 -04:00

110 lines
4.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.HiggsBoson.Potential
/-!
# The Two Higgs Doublet Model
The two Higgs doublet model is the standard model plus an additional Higgs doublet.
Currently this file contains the definition of the 2HDM potential.
-/
namespace TwoHDM
open StandardModel
open ComplexConjugate
open HiggsField
noncomputable section
/-- The potential of the two Higgs doublet model. -/
def potential (m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ : ā„)
(m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ : ā„‚) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : ā„ :=
m₁₁2 * ‖Φ1‖_H ^ 2 x + mā‚‚ā‚‚2 * ‖Φ2‖_H ^ 2 x - (m₁₂2 * ⟪Φ1, Φ2⟫_H x + conj m₁₂2 * ⟪Φ2, Φ1⟫_H x).re
+ 1/2 * š“µā‚ * ‖Φ1‖_H ^ 2 x * ‖Φ1‖_H ^ 2 x + 1/2 * š“µā‚‚ * ‖Φ2‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
+ š“µā‚ƒ * ‖Φ1‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
+ š“µā‚„ * ā€–āŸŖĪ¦1, Φ2⟫_H x‖ ^ 2 + (1/2 * š“µā‚… * ⟪Φ1, Φ2⟫_H x ^ 2 + 1/2 * conj š“µā‚… * ⟪Φ2, Φ1⟫_H x ^ 2).re
+ (š“µā‚† * ‖Φ1‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj š“µā‚† * ‖Φ1‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
+ (š“µā‚‡ * ‖Φ2‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj š“µā‚‡ * ‖Φ2‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
namespace potential
variable (Φ1 Φ2 : HiggsField)
variable (m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ : ā„)
variable (m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ : ā„‚)
/-!
## Simple properties of the potential
-/
/-- Swapping `Φ1` with `Φ2`, and a number of the parameters (with possible conjugation) leads
to an identical potential. -/
lemma swap_fields :
potential m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ Φ1 Φ2
= potential mā‚‚ā‚‚2 m₁₁2 š“µā‚‚ š“µā‚ š“µā‚ƒ š“µā‚„ (conj m₁₂2) (conj š“µā‚…) (conj š“µā‚‡) (conj š“µā‚†) Φ2 Φ1 := by
funext x
simp only [potential, HiggsField.normSq, Complex.add_re, Complex.mul_re, Complex.conj_re,
Complex.conj_im, neg_mul, sub_neg_eq_add, one_div, Complex.norm_eq_abs, Complex.inv_re,
Complex.re_ofNat, Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat,
neg_zero, zero_div, zero_mul, sub_zero, Complex.mul_im, add_zero, mul_neg, Complex.ofReal_pow,
RingHomCompTriple.comp_apply, RingHom.id_apply]
ring_nf
simp only [one_div, add_left_inj, add_right_inj, mul_eq_mul_left_iff]
apply Or.inl
rw [HiggsField.innerProd, HiggsField.innerProd, ← InnerProductSpace.conj_symm, Complex.abs_conj]
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
lemma right_zero : potential m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ Φ1 0 =
StandardModel.HiggsField.potential (- m₁₁2) (š“µā‚/2) Φ1 := by
funext x
simp only [potential, normSq, ContMDiffSection.coe_zero, Pi.zero_apply, norm_zero, ne_eq,
OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, mul_zero, add_zero, innerProd_right_zero,
innerProd_left_zero, Complex.zero_re, sub_zero, one_div, Complex.ofReal_pow,
Complex.ofReal_zero, HiggsField.potential, neg_neg, add_right_inj, mul_eq_mul_right_iff,
pow_eq_zero_iff, norm_eq_zero, or_self_right]
ring_nf
simp only [true_or]
/-- If `Φ₁` is zero the potential reduces to the Higgs potential on `Φ₂`. -/
lemma left_zero : potential m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ 0 Φ2 =
StandardModel.HiggsField.potential (- mā‚‚ā‚‚2) (š“µā‚‚/2) Φ2 := by
rw [swap_fields, right_zero]
/-!
## Potential bounded from below
-/
/-! TODO: Prove bounded properties of the 2HDM potential. -/
/-- The proposition on the coefficents for a potential to be bounded. -/
def IsBounded (m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ : ā„) (m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ : ā„‚) : Prop :=
∃ c, āˆ€ Φ1 Φ2 x, c ≤ potential m₁₁2 mā‚‚ā‚‚2 š“µā‚ š“µā‚‚ š“µā‚ƒ š“µā‚„ m₁₂2 š“µā‚… š“µā‚† š“µā‚‡ Φ1 Φ2 x
/-!
## Smoothness of the potential
-/
/-! TODO: Prove smoothness properties of the 2HDM potential. -/
/-!
## Invariance of the potential under gauge transformations
-/
/-! TODO: Prove invariance properties of the 2HDM potential. -/
end potential
end
end TwoHDM