PhysLean/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean
2025-02-08 13:07:54 +00:00

257 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.CrAnFieldOp
import HepLean.PerturbationTheory.FieldSpecification.CrAnSection
/-!
# Creation and annihilation free-algebra
This module defines the creation and annihilation algebra for a field structure.
The creation and annihilation algebra extends from the state algebra by adding information about
whether a state is a creation or annihilation operator.
The algebra is spanned by lists of creation/annihilation states.
The main structures defined in this module are:
* `FieldOpFreeAlgebra` - The creation and annihilation algebra
* `ofCrAnOpF` - Maps a creation/annihilation state to the algebra
* `ofCrAnListF` - Maps a list of creation/annihilation states to the algebra
* `ofFieldOpF` - Maps a state to a sum of creation and annihilation operators
* `crPartF` - The creation part of a state in the algebra
* `anPartF` - The annihilation part of a state in the algebra
* `superCommuteF` - The super commutator on the algebra
The key lemmas show how these operators interact, particularly focusing on the
super commutation relations between creation and annihilation operators.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is
the free algebra generated by `𝓕.CrAnFieldOp`. -/
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra 𝓕.CrAnFieldOp
namespace FieldOpFreeAlgebra
remark naming_convention := "
For mathematicial objects defined in relation to `FieldOpFreeAlgebra` we will often postfix
their names with an `F` to indicate that they are related to the free algebra.
This is to avoid confusion when working within the context of `FieldOpAlgebra` which is defined
as a quotient of `FieldOpFreeAlgebra`."
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
single `𝓕.CrAnFieldOp`. -/
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
FreeAlgebra.ι φ
/--
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
the inclusion of the creation and annihilation parts of field operators into the
operator algebra) there is a unique algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
such that `g ∘ ofCrAnOpF = f`.
The unique `g` is given by `FreeAlgebra.lift f`.
-/
lemma universality {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A) :
∃! g : FieldOpFreeAlgebra 𝓕 →ₐ[] A, g ∘ ofCrAnOpF = f := by
use FreeAlgebra.lift f
apply And.intro
· funext x
simp [ofCrAnOpF]
· intro g hg
ext x
simpa using congrFun hg x
/-- For a field specification `𝓕`, `ofCrAnListF φs` of `𝓕.FieldOpFreeAlgebra` formed by a
list `φs` of `𝓕.CrAnFieldOp`. For example for the list `[φ₁ᶜ, φ₂ᵃ, φ₃ᶜ]` we schematically
get `φ₁ᶜφ₂ᵃφ₃ᶜ`. The set of all `ofCrAnListF φs` forms a basis of `FieldOpFreeAlgebra 𝓕`. -/
def ofCrAnListF (φs : List 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofCrAnOpF φs).prod
@[simp]
lemma ofCrAnListF_nil : ofCrAnListF ([] : List 𝓕.CrAnFieldOp) = 1 := rfl
lemma ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp) :
ofCrAnListF (φ :: φs) = ofCrAnOpF φ * ofCrAnListF φs := rfl
lemma ofCrAnListF_append (φs φs' : List 𝓕.CrAnFieldOp) :
ofCrAnListF (φs ++ φs') = ofCrAnListF φs * ofCrAnListF φs' := by
simp [ofCrAnListF, List.map_append]
lemma ofCrAnListF_singleton (φ : 𝓕.CrAnFieldOp) :
ofCrAnListF [φ] = ofCrAnOpF φ := by simp [ofCrAnListF]
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
`𝓕.FieldOp` by summing over the creation and annihilation components of `𝓕.FieldOp`.
For example for `φ₁` an incoming asymptotic field operator we get
`ofCrAnOpF φ₁ᶜ`, and for `φ₁` a
position field operator we get `ofCrAnOpF φ₁ᶜ + ofCrAnOpF φ₁ᵃ`. -/
def ofFieldOpF (φ : 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 :=
∑ (i : 𝓕.fieldOpToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
list of `𝓕.FieldOp` by summing over the creation and annihilation components.
For example, `φ₁` and `φ₂` position states `[φ1, φ2]` gets sent to
`(ofCrAnOpF φ1ᶜ + ofCrAnOpF φ1ᵃ) * (ofCrAnOpF φ2ᶜ + ofCrAnOpF φ2ᵃ)`. -/
def ofFieldOpListF (φs : List 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
remark notation_drop := "In doc-strings we will often drop explicit applications of `ofCrAnOpF`,
`ofCrAnListF`, `ofFieldOpF`, and `ofFieldOpListF`"
/-- Coercion from `List 𝓕.FieldOp` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
instance : Coe (List 𝓕.FieldOp) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
@[simp]
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.FieldOp) = 1 := rfl
lemma ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
ofFieldOpListF (φ :: φs) = ofFieldOpF φ * ofFieldOpListF φs := rfl
lemma ofFieldOpListF_singleton (φ : 𝓕.FieldOp) :
ofFieldOpListF [φ] = ofFieldOpF φ := by simp [ofFieldOpListF]
lemma ofFieldOpListF_append (φs φs' : List 𝓕.FieldOp) :
ofFieldOpListF (φs ++ φs') = ofFieldOpListF φs * ofFieldOpListF φs' := by
dsimp only [ofFieldOpListF]
rw [List.map_append, List.prod_append]
lemma ofFieldOpListF_sum (φs : List 𝓕.FieldOp) :
ofFieldOpListF φs = ∑ (s : CrAnSection φs), ofCrAnListF s.1 := by
induction φs with
| nil => simp
| cons φ φs ih =>
rw [CrAnSection.sum_cons]
dsimp only [CrAnSection.cons, ofCrAnListF_cons]
conv_rhs =>
enter [2, x]
rw [← Finset.mul_sum]
rw [← Finset.sum_mul, ofFieldOpListF_cons, ← ih]
rfl
/-!
## Creation and annihilation parts of a state
-/
/-- The algebra map taking an element of the free-state algebra to
the part of it in the creation and annihilation free algebra
spanned by creation operators. -/
def crPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
match φ with
| FieldOp.inAsymp φ => ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩
| FieldOp.outAsymp _ => 0
@[simp]
lemma crPartF_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPartF (FieldOp.inAsymp φ) = ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
crPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPartF (FieldOp.outAsymp φ) = 0 := by
simp [crPartF]
/-- The algebra map taking an element of the free-state algebra to
the part of it in the creation and annihilation free algebra
spanned by annihilation operators. -/
def anPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
match φ with
| FieldOp.inAsymp _ => 0
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩
| FieldOp.outAsymp φ => ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩
@[simp]
lemma anPartF_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPartF (FieldOp.inAsymp φ) = 0 := by
simp [anPartF]
@[simp]
lemma anPartF_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
anPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩ := by
simp [anPartF]
@[simp]
lemma anPartF_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPartF (FieldOp.outAsymp φ) = ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩ := by
simp [anPartF]
lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.FieldOp) :
ofFieldOpF φ = crPartF φ + anPartF φ := by
rw [ofFieldOpF]
cases φ with
| inAsymp φ => simp [fieldOpToCrAnType]
| position φ => simp [fieldOpToCrAnType, CreateAnnihilate.sum_eq]
| outAsymp φ => simp [fieldOpToCrAnType]
/-!
## The basis of the creation and annihilation free-algebra.
-/
/-- The basis of the free creation and annihilation algebra formed by lists of CrAnFieldOp. -/
noncomputable def ofCrAnListFBasis : Basis (List 𝓕.CrAnFieldOp) (FieldOpFreeAlgebra 𝓕) where
repr := FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
@[simp]
lemma ofListBasis_eq_ofList (φs : List 𝓕.CrAnFieldOp) :
ofCrAnListFBasis φs = ofCrAnListF φs := by
simp only [ofCrAnListFBasis, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
Basis.coe_ofRepr, AlgEquiv.toLinearEquiv_symm, AlgEquiv.toLinearEquiv_apply,
AlgEquiv.ofAlgHom_symm_apply, ofCrAnListF]
erw [MonoidAlgebra.lift_apply]
simp only [zero_smul, Finsupp.sum_single_index, one_smul]
rw [@FreeMonoid.lift_apply]
match φs with
| [] => rfl
| φ :: φs => erw [List.map_cons]
/-!
## Some useful multi-linear maps.
-/
/-- The bi-linear map associated with multiplication in `FieldOpFreeAlgebra`. -/
noncomputable def mulLinearMap : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 →ₗ[]
FieldOpFreeAlgebra 𝓕 where
toFun a := {
toFun := fun b => a * b,
map_add' := fun c d => by simp [mul_add]
map_smul' := by simp}
map_add' := fun a b => by
ext c
simp [add_mul]
map_smul' := by
intros
ext c
simp [smul_mul']
lemma mulLinearMap_apply (a b : FieldOpFreeAlgebra 𝓕) :
mulLinearMap a b = a * b := rfl
/-- The linear map associated with scalar-multiplication in `FieldOpFreeAlgebra`. -/
noncomputable def smulLinearMap (c : ) : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 where
toFun a := c • a
map_add' := by simp
map_smul' m x := by simp [smul_smul, RingHom.id_apply, NonUnitalNormedCommRing.mul_comm]
end FieldOpFreeAlgebra
end FieldSpecification