PhysLean/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean
2025-02-08 13:07:54 +00:00

387 lines
18 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.UncontractedList
/-!
# Inserting an element into a contraction based on a list
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open HepLean.Fin
/-!
## Inserting an element into a list
-/
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
a `𝓕.FieldOp` `φ`, an `i ≤ φs.length` and a `j` which is either `none` or
some element of `φsΛ.uncontracted`, the new Wick contraction
`φsΛ.insertAndContract φ i j` is defined by inserting `φ` into `φs` after
the first `i`-elements and moving the values representing the contracted pairs in `φsΛ`
accordingly.
If `j` is not `none`, but rather `some j`, to this contraction is added the contraction
of `φ` (at position `i`) with the new position of `j` after `φ` is added.
In other words, `φsΛ.insertAndContract φ i j` is formed by adding `φ` to `φs` at position `i`,
and contracting `φ` with the field originally at position `j` if `j` is not none.
The notation `φsΛ ↩Λ φ i j` is used to denote `φsΛ.insertAndContract φ i j`. -/
def insertAndContract {φs : List 𝓕.FieldOp} (φ : 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : Option φsΛ.uncontracted) :
WickContraction (φs.insertIdx i φ).length :=
congr (by simp) (φsΛ.insertAndContractNat i j)
@[inherit_doc insertAndContract]
scoped[WickContraction] notation φs "↩Λ" φ:max i:max j => insertAndContract φ φs i j
@[simp]
lemma insertAndContract_fstFieldOfContract (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Option φsΛ.uncontracted)
(a : φsΛ.1) : (φsΛ ↩Λ φ i j).fstFieldOfContract
(congrLift (insertIdx_length_fin φ φs i).symm (insertLift i j a)) =
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove (φsΛ.fstFieldOfContract a)) := by
simp [insertAndContract]
@[simp]
lemma insertAndContract_sndFieldOfContract (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Option (φsΛ.uncontracted))
(a : φsΛ.1) : (φsΛ ↩Λ φ i j).sndFieldOfContract
(congrLift (insertIdx_length_fin φ φs i).symm (insertLift i j a)) =
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove (φsΛ.sndFieldOfContract a)) := by
simp [insertAndContract]
@[simp]
lemma insertAndContract_fstFieldOfContract_some_incl (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(insertAndContract φ φsΛ i (some j)).fstFieldOfContract
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩) =
if i < i.succAbove j.1 then
finCongr (insertIdx_length_fin φ φs i).symm i else
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) := by
split
· rename_i h
refine (insertAndContract φ φsΛ i (some j)).eq_fstFieldOfContract_of_mem
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩)
(i := finCongr (insertIdx_length_fin φ φs i).symm i) (j :=
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_
· simp [congrLift]
· simp [congrLift]
· rw [Fin.lt_def] at h ⊢
simp_all
· rename_i h
refine (insertAndContract φ φsΛ i (some j)).eq_fstFieldOfContract_of_mem
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩)
(i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j))
(j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_
· simp [congrLift]
· simp [congrLift]
· rw [Fin.lt_def] at h ⊢
simp_all only [Nat.succ_eq_add_one, Fin.val_fin_lt, not_lt, finCongr_apply, Fin.coe_cast]
have hi : i.succAbove j ≠ i := Fin.succAbove_ne i j
omega
/-!
## insertAndContract and getDual?
-/
@[simp]
lemma insertAndContract_none_getDual?_self (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
(φsΛ ↩Λ φ i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i) = none := by
simp only [Nat.succ_eq_add_one, insertAndContract, getDual?_congr, finCongr_apply, Fin.cast_trans,
Fin.cast_eq_self, Option.map_eq_none']
simp
lemma insertAndContract_isSome_getDual?_self (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
((φsΛ ↩Λ φ i (some j)).getDual?
(Fin.cast (insertIdx_length_fin φ φs i).symm i)).isSome := by
simp [insertAndContract, getDual?_congr]
lemma insertAndContract_some_getDual?_self_not_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
¬ ((φsΛ ↩Λ φ i (some j)).getDual?
(Fin.cast (insertIdx_length_fin φ φs i).symm i)) = none := by
simp [insertAndContract, getDual?_congr]
@[simp]
lemma insertAndContract_some_getDual?_self_eq (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
((φsΛ ↩Λ φ i (some j)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i))
= some (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)) := by
simp [insertAndContract, getDual?_congr]
@[simp]
lemma insertAndContract_some_getDual?_some_eq (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
((φsΛ ↩Λ φ i (some j)).getDual?
(Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)))
= some (Fin.cast (insertIdx_length_fin φ φs i).symm i) := by
rw [getDual?_eq_some_iff_mem]
rw [@Finset.pair_comm]
rw [← getDual?_eq_some_iff_mem]
simp
@[simp]
lemma insertAndContract_none_succAbove_getDual?_eq_none_iff (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) :
(φsΛ ↩Λ φ i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove j)) = none ↔ φsΛ.getDual? j = none := by
simp [insertAndContract, getDual?_congr]
@[simp]
lemma insertAndContract_some_succAbove_getDual?_eq_option (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length)
(k : φsΛ.uncontracted) (hkj : j ≠ k.1) :
(φsΛ ↩Λ φ i (some k)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove j)) = Option.map (Fin.cast (insertIdx_length_fin φ φs i).symm ∘ i.succAbove)
(φsΛ.getDual? j) := by
simp only [Nat.succ_eq_add_one, insertAndContract, getDual?_congr, finCongr_apply, Fin.cast_trans,
Fin.cast_eq_self, ne_eq, hkj, not_false_eq_true, insertAndContractNat_some_getDual?_of_neq,
Option.map_map]
rfl
@[simp]
lemma insertAndContract_none_succAbove_getDual?_isSome_iff (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) :
((φsΛ ↩Λ φ i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove j))).isSome ↔ (φsΛ.getDual? j).isSome := by
rw [← not_iff_not]
simp
@[simp]
lemma insertAndContract_none_getDual?_get_eq (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length)
(h : ((φsΛ ↩Λ φ i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove j))).isSome) :
((φsΛ ↩Λ φ i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove j))).get h = Fin.cast (insertIdx_length_fin φ φs i).symm
(i.succAbove ((φsΛ.getDual? j).get (by simpa using h))) := by
simp [insertAndContract, getDual?_congr_get]
/-........................................... -/
@[simp]
lemma insertAndContract_sndFieldOfContract_some_incl (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).sndFieldOfContract
(congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩) =
if i < i.succAbove j.1 then
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) else
finCongr (insertIdx_length_fin φ φs i).symm i := by
split
· rename_i h
refine (φsΛ ↩Λ φ i (some j)).eq_sndFieldOfContract_of_mem
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩)
(i := finCongr (insertIdx_length_fin φ φs i).symm i) (j :=
finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_
· simp [congrLift]
· simp [congrLift]
· rw [Fin.lt_def] at h ⊢
simp_all
· rename_i h
refine (φsΛ ↩Λ φ i (some j)).eq_sndFieldOfContract_of_mem
(a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by
simp [insertAndContractNat]⟩)
(i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j))
(j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_
· simp [congrLift]
· simp [congrLift]
· rw [Fin.lt_def] at h ⊢
simp_all only [Nat.succ_eq_add_one, Fin.val_fin_lt, not_lt, finCongr_apply, Fin.coe_cast]
have hi : i.succAbove j ≠ i := Fin.succAbove_ne i j
omega
lemma insertAndContract_none_prod_contractions (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ)
(f : (φsΛ ↩Λ φ i none).1 → M) [CommMonoid M] :
∏ a, f a = ∏ (a : φsΛ.1), f (congrLift (insertIdx_length_fin φ φs i).symm
(insertLift i none a)) := by
let e1 := Equiv.ofBijective (φsΛ.insertLift i none) (insertLift_none_bijective i)
let e2 := Equiv.ofBijective (congrLift (insertIdx_length_fin φ φs i).symm)
((φsΛ.insertAndContractNat i none).congrLift_bijective ((insertIdx_length_fin φ φs i).symm))
erw [← e2.prod_comp]
erw [← e1.prod_comp]
rfl
lemma insertAndContract_some_prod_contractions (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted)
(f : (φsΛ ↩Λ φ i (some j)).1 → M) [CommMonoid M] :
∏ a, f a = f (congrLift (insertIdx_length_fin φ φs i).symm
⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩) *
∏ (a : φsΛ.1), f (congrLift (insertIdx_length_fin φ φs i).symm (insertLift i (some j) a)) := by
let e2 := Equiv.ofBijective (congrLift (insertIdx_length_fin φ φs i).symm)
((φsΛ.insertAndContractNat i (some j)).congrLift_bijective ((insertIdx_length_fin φ φs i).symm))
erw [← e2.prod_comp]
let e1 := Equiv.ofBijective (φsΛ.insertLiftSome i j) (insertLiftSome_bijective i j)
erw [← e1.prod_comp]
rw [Fintype.prod_sum_type]
simp only [Finset.univ_unique, PUnit.default_eq_unit, Nat.succ_eq_add_one, Finset.prod_singleton,
Finset.univ_eq_attach]
rfl
/-- Given a finite set of `Fin φs.length` the finite set of `(φs.insertIdx i φ).length`
formed by mapping elements using `i.succAboveEmb` and `finCongr`. -/
def insertAndContractLiftFinset (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(i : Fin φs.length.succ) (a : Finset (Fin φs.length)) :
Finset (Fin (φs.insertIdx i φ).length) :=
(a.map i.succAboveEmb).map (finCongr (insertIdx_length_fin φ φs i).symm).toEmbedding
@[simp]
lemma self_not_mem_insertAndContractLiftFinset (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(i : Fin φs.length.succ) (a : Finset (Fin φs.length)) :
Fin.cast (insertIdx_length_fin φ φs i).symm i ∉ insertAndContractLiftFinset φ i a := by
simp only [Nat.succ_eq_add_one, insertAndContractLiftFinset, Finset.mem_map_equiv, finCongr_symm,
finCongr_apply, Fin.cast_trans, Fin.cast_eq_self]
simp only [Finset.mem_map, Fin.succAboveEmb_apply, not_exists, not_and]
intro x
exact fun a => Fin.succAbove_ne i x
lemma succAbove_mem_insertAndContractLiftFinset (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(i : Fin φs.length.succ) (a : Finset (Fin φs.length)) (j : Fin φs.length) :
Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)
∈ insertAndContractLiftFinset φ i a ↔ j ∈ a := by
simp only [insertAndContractLiftFinset, Finset.mem_map_equiv, finCongr_symm, finCongr_apply,
Fin.cast_trans, Fin.cast_eq_self]
simp only [Finset.mem_map, Fin.succAboveEmb_apply]
apply Iff.intro
· intro h
obtain ⟨x, hx1, hx2⟩ := h
rw [Function.Injective.eq_iff (Fin.succAbove_right_injective)] at hx2
simp_all
· intro h
use j
lemma insert_fin_eq_self (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(i : Fin φs.length.succ) (j : Fin (List.insertIdx i φ φs).length) :
j = Fin.cast (insertIdx_length_fin φ φs i).symm i
∃ k, j = Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove k) := by
obtain ⟨k, hk⟩ := (finCongr (insertIdx_length_fin φ φs i).symm).surjective j
subst hk
by_cases hi : k = i
· simp [hi]
· simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hi
obtain ⟨z, hk⟩ := hi
subst hk
right
use z
rfl
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
Wick contractions of `φs` with `φ` inserted at `i` is equal to the sum over Wick contractions
`φsΛ` of just `φs` and the sum over optional uncontracted elements of the `φsΛ`.
I.e. `∑ (φsΛ : WickContraction (φs.insertIdx i φ).length), f φsΛ` is equal to
`∑ (φsΛ : WickContraction φs.length), ∑ (k : Option φsΛ.uncontracted), f (φsΛ ↩Λ φ i k) `.
where `(φs.insertIdx i φ)` is `φs` with `φ` inserted at position `i`. -/
lemma insertLift_sum (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(i : Fin φs.length.succ) [AddCommMonoid M] (f : WickContraction (φs.insertIdx i φ).length → M) :
∑ c, f c =
∑ (φsΛ : WickContraction φs.length), ∑ (k : Option φsΛ.uncontracted), f (φsΛ ↩Λ φ i k) := by
rw [sum_extractEquiv_congr (finCongr (insertIdx_length_fin φ φs i).symm i) f
(insertIdx_length_fin φ φs i)]
rfl
/-!
## Uncontracted list
-/
lemma insertAndContract_uncontractedList_none_map (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
[φsΛ ↩Λ φ i none]ᵘᶜ = List.insertIdx (φsΛ.uncontractedListOrderPos i) φ [φsΛ]ᵘᶜ := by
simp only [Nat.succ_eq_add_one, insertAndContract, uncontractedListGet]
rw [congr_uncontractedList]
erw [uncontractedList_extractEquiv_symm_none]
rw [orderedInsert_succAboveEmb_uncontractedList_eq_insertIdx]
rw [insertIdx_map, insertIdx_map]
congr 1
· simp
rw [List.map_map, List.map_map]
congr
conv_rhs => rw [get_eq_insertIdx_succAbove φ φs i]
rfl
@[simp]
lemma insertAndContract_uncontractedList_none_zero (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
(φsΛ : WickContraction φs.length) :
[φsΛ ↩Λ φ 0 none]ᵘᶜ = φ :: [φsΛ]ᵘᶜ := by
rw [insertAndContract_uncontractedList_none_map]
simp [uncontractedListOrderPos]
open FieldStatistic in
lemma stat_ofFinset_of_insertAndContractLiftFinset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(i : Fin φs.length.succ) (a : Finset (Fin φs.length)) :
(𝓕 |>ₛ ⟨(φs.insertIdx i φ).get, insertAndContractLiftFinset φ i a⟩) = 𝓕 |>ₛ ⟨φs.get, a⟩ := by
simp only [ofFinset, Nat.succ_eq_add_one]
congr 1
rw [get_eq_insertIdx_succAbove φ _ i, ← List.map_map, ← List.map_map]
congr
have h1 : (List.map (⇑(finCongr (insertIdx_length_fin φ φs i).symm))
(List.map i.succAbove (Finset.sort (fun x1 x2 => x1 ≤ x2) a))).Sorted (· ≤ ·) := by
simp only [Nat.succ_eq_add_one, List.map_map]
refine
fin_list_sorted_monotone_sorted (Finset.sort (fun x1 x2 => x1 ≤ x2) a) ?hl
(⇑(finCongr (Eq.symm (insertIdx_length_fin φ φs i))) ∘ i.succAbove) ?hf
exact Finset.sort_sorted (fun x1 x2 => x1 ≤ x2) a
refine StrictMono.comp (fun ⦃a b⦄ a => a) ?hf.hf
exact Fin.strictMono_succAbove i
have h2 : (List.map (⇑(finCongr (insertIdx_length_fin φ φs i).symm))
(List.map i.succAbove (Finset.sort (fun x1 x2 => x1 ≤ x2) a))).Nodup := by
simp only [Nat.succ_eq_add_one, List.map_map]
refine List.Nodup.map ?_ ?_
apply (Equiv.comp_injective _ (finCongr _)).mpr
exact Fin.succAbove_right_injective
exact Finset.sort_nodup (fun x1 x2 => x1 ≤ x2) a
have h3 : (List.map (⇑(finCongr (insertIdx_length_fin φ φs i).symm))
(List.map i.succAbove (Finset.sort (fun x1 x2 => x1 ≤ x2) a))).toFinset
= (insertAndContractLiftFinset φ i a) := by
ext b
simp only [Nat.succ_eq_add_one, List.map_map, List.mem_toFinset, List.mem_map, Finset.mem_sort,
Function.comp_apply, finCongr_apply]
rcases insert_fin_eq_self φ i b with hk | hk
· subst hk
simp only [Nat.succ_eq_add_one, self_not_mem_insertAndContractLiftFinset, iff_false,
not_exists, not_and]
intro x hx
refine Fin.ne_of_val_ne ?h.inl.h
simp only [Fin.coe_cast, ne_eq]
rw [Fin.val_eq_val]
exact Fin.succAbove_ne i x
· obtain ⟨k, hk⟩ := hk
subst hk
simp only [Nat.succ_eq_add_one]
rw [succAbove_mem_insertAndContractLiftFinset]
apply Iff.intro
· intro h
obtain ⟨x, hx⟩ := h
simp only [Fin.ext_iff, Fin.coe_cast] at hx
rw [Fin.val_eq_val] at hx
rw [Function.Injective.eq_iff] at hx
rw [← hx.2]
exact hx.1
exact Fin.succAbove_right_injective
· intro h
use k
rw [← h3]
rw [(List.toFinset_sort (· ≤ ·) h2).mpr h1]
end WickContraction