PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/Basic.lean
2024-08-02 16:52:04 -04:00

407 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Set.Finite
import Mathlib.Data.Finset.Sort
/-!
# Index notation for a type
In this file we will define an index of a Lorentz tensor as a
string satisfying certain properties.
For example, the string `ᵘ¹²` is an index of a real Lorentz tensors.
The first character `ᵘ` specifies the color of the index, and the subsequent characters
`¹²` specify the id of the index.
Strings of indices e.g. `ᵘ¹²ᵤ₄₃`` are defined elsewhere.
-/
open Lean
open String
/-- The class defining index notation on a type `X`.
Normally `X` will be taken as the type of colors of a `TensorStructure`. -/
class IndexNotation (X : Type) where
/-- The list of characters describing the index notation e.g.
`{'ᵘ', 'ᵤ'}` for real tensors. -/
charList : Finset Char
/-- An equivalence between `X` (colors of indices) and `charList`.
This takes every color of index to its notation character. -/
notaEquiv : X ≃ charList
namespace IndexNotation
variable (X : Type) [IndexNotation X]
variable [Fintype X] [DecidableEq X]
/-!
## Lists of characters forming an index
Here we define `listCharIndex` and properties thereof.
-/
/-- The map taking a color to its notation character. -/
def nota {X : Type} [IndexNotation X] (x : X) : Char :=
(IndexNotation.notaEquiv).toFun x
/-- A character is a `notation character` if it is in `charList`. -/
def isNotationChar (c : Char) : Bool :=
if c ∈ charList X then true else false
/-- A character is a numeric superscript if it is e.g. `⁰`, `¹`, etc. -/
def isNumericSupscript (c : Char) : Bool :=
c = '¹' c = '²' c = '³' c = '⁴' c = '⁵' c = '⁶' c = '⁷' c = '⁸' c = '⁹' c = '⁰'
/-- Given a character `f` which is a notation character, this is true if `c`
is a subscript when `f` is a subscript or `c` is a superscript when `f` is a
superscript. -/
def IsIndexId (f : Char) (c : Char) : Bool :=
(isSubScriptAlnum f ∧ isNumericSubscript c)
(¬ isSubScriptAlnum f ∧ isNumericSupscript c)
/-- The proposition for a list of characters to be the tail of an index
e.g. `['¹', '⁷', ...]` -/
def listCharIndexTail (f : Char) (l : List Char) : Prop :=
l ≠ [] ∧ List.all l (fun c => IsIndexId f c)
instance : Decidable (listCharIndexTail f l) := instDecidableAnd
/-- The proposition for a list of characters to be the characters of an index
e.g. `['ᵘ', '¹', '⁷', ...]` -/
def listCharIndex (l : List Char) : Prop :=
if h : l = [] then True
else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
listCharIndexTail sfst l.tail
/-- An auxillary rewrite lemma to prove that `listCharIndex` is decidable. -/
lemma listCharIndex_iff (l : List Char) : listCharIndex X l
↔ (if h : l = [] then True else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else listCharIndexTail sfst l.tail) := by
rw [listCharIndex]
instance : Decidable (listCharIndex X l) :=
@decidable_of_decidable_of_iff _ _
(@instDecidableDite _ _ _ _ _ <|
fun _ => @instDecidableDite _ _ _ _ _ <|
fun _ => instDecidableListCharIndexTail)
(listCharIndex_iff X l).symm
/-!
## The definition of an index and its properties
-/
/-- An index is a non-empty string satisfying the condtion `listCharIndex`,
e.g. `ᵘ¹²` or `ᵤ₄₃` etc. -/
def Index : Type := {s : String // listCharIndex X s.toList ∧ s.toList ≠ []}
namespace Index
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
/-- Creats an index from a non-empty list of characters satisfying `listCharIndex`. -/
def ofCharList (l : List Char) (h : listCharIndex X l ∧ l ≠ []) : Index X := ⟨l.asString, h⟩
instance : ToString (Index X) := ⟨fun i => i.val⟩
/-- Gets the first character in an index e.g. `ᵘ` as an element of `charList X`. -/
def head (s : Index X) : charList X :=
⟨s.val.toList.head (s.prop.2), by
have h := s.prop.1
have h2 := s.prop.2
simp [listCharIndex] at h
simp_all only [toList, ne_eq, Bool.not_eq_true, ↓reduceDIte]
simpa [isNotationChar] using h.1⟩
/-- The color associated to an index. -/
def toColor (s : Index X) : X := (IndexNotation.notaEquiv).invFun s.head
/-- A map from super and subscript numerical characters to the natural numbers,
returning `0` on all other characters. -/
def charToNat (c : Char) : Nat :=
match c with
| '₀' => 0
| '₁' => 1
| '₂' => 2
| '₃' => 3
| '₄' => 4
| '₅' => 5
| '₆' => 6
| '₇' => 7
| '₈' => 8
| '₉' => 9
| '⁰' => 0
| '¹' => 1
| '²' => 2
| '³' => 3
| '⁴' => 4
| '⁵' => 5
| '⁶' => 6
| '⁷' => 7
| '⁸' => 8
| '⁹' => 9
| _ => 0
/-- The numerical characters associated with an index. -/
def tail (s : Index X) : List Char := s.val.toList.tail
/-- The natural numbers assocaited with an index. -/
def tailNat (s : Index X) : List Nat := s.tail.map charToNat
/-- The id of an index, as a natural number. -/
def id (s : Index X) : Nat := s.tailNat.foldl (fun a b => 10 * a + b) 0
end Index
/-!
## List of indices
-/
/-- The type of lists of indices. -/
def IndexList : Type := List (Index X)
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l : IndexList X)
/-- The number of indices in an index list. -/
def numIndices : Nat := l.length
/-- The map of from `Fin s.numIndices` into colors associated to an index list. -/
def colorMap : Fin l.numIndices → X :=
fun i => (l.get i).toColor
/-- The map of from `Fin s.numIndices` into the natural numbers associated to an index list. -/
def idMap : Fin l.numIndices → Nat :=
fun i => (l.get i).id
/-- Given a list of indices a subset of `Fin l.numIndices × Index X`
of pairs of positions in `l` and the corresponding item in `l`. -/
def toPosSet (l : IndexList X) : Set (Fin l.numIndices × Index X) :=
{(i, l.get i) | i : Fin l.numIndices}
/-- Equivalence between `toPosSet` and `Fin l.numIndices`. -/
def toPosSetEquiv (l : IndexList X) : l.toPosSet ≃ Fin l.numIndices where
toFun := fun x => x.1.1
invFun := fun x => ⟨(x, l.get x), by simp [toPosSet]⟩
left_inv x := by
have hx := x.prop
simp [toPosSet] at hx
simp only [List.get_eq_getElem]
obtain ⟨i, hi⟩ := hx
have hi2 : i = x.1.1 := by
obtain ⟨val, property⟩ := x
obtain ⟨fst, snd⟩ := val
simp_all only [Prod.mk.injEq]
subst hi2
simp_all only [Subtype.coe_eta]
right_inv := by
intro x
rfl
lemma toPosSet_is_finite (l : IndexList X) : l.toPosSet.Finite :=
Finite.intro l.toPosSetEquiv
instance : Fintype l.toPosSet where
elems := Finset.map l.toPosSetEquiv.symm.toEmbedding Finset.univ
complete := by
intro x
simp_all only [Finset.mem_map_equiv, Equiv.symm_symm, Finset.mem_univ]
/-- Given a list of indices a finite set of `Fin l.numIndices × Index X`
of pairs of positions in `l` and the corresponding item in `l`. -/
def toPosFinset (l : IndexList X) : Finset (Fin l.numIndices × Index X) :=
l.toPosSet.toFinset
instance : HAppend (IndexList X) (IndexList X) (IndexList X) :=
@instHAppendOfAppend (List (Index X)) List.instAppend
/-- The construction of a list of indices from a map
from `Fin n` to `Index X`. -/
def fromFinMap {n : } (f : Fin n → Index X) : IndexList X :=
(Fin.list n).map f
@[simp]
lemma fromFinMap_numIndices {n : } (f : Fin n → Index X) :
(fromFinMap f).numIndices = n := by
simp [fromFinMap, numIndices]
/-!
## Contracted and non-contracting indices
-/
/-- The proposition on a element (or really index of element) of a index list
`s` which is ture iff does not share an id with any other element.
This tells us that it should not be contracted with any other element. -/
def NoContr (i : Fin l.length) : Prop :=
∀ j, i ≠ j → l.idMap i ≠ l.idMap j
instance (i : Fin l.length) : Decidable (l.NoContr i) :=
Fintype.decidableForallFintype
/-- The finset of indices of an index list corresponding to elements which do not contract. -/
def noContrFinset : Finset (Fin l.length) :=
Finset.univ.filter l.NoContr
/-- An eqiuvalence between the subtype of indices of a index list `l` which do not contract and
`Fin l.noContrFinset.card`. -/
def noContrSubtypeEquiv : {i : Fin l.length // l.NoContr i} ≃ Fin l.noContrFinset.card :=
(Equiv.subtypeEquivRight (fun x => by simp [noContrFinset])).trans
(Finset.orderIsoOfFin l.noContrFinset rfl).toEquiv.symm
@[simp]
lemma idMap_noContrSubtypeEquiv_neq (i j : Fin l.noContrFinset.card) (h : i ≠ j) :
l.idMap (l.noContrSubtypeEquiv.symm i).1 ≠ l.idMap (l.noContrSubtypeEquiv.symm j).1 := by
have hi := ((l.noContrSubtypeEquiv).symm i).2
simp [NoContr] at hi
have hj := hi ((l.noContrSubtypeEquiv).symm j)
apply hj
rw [@SetCoe.ext_iff]
erw [Equiv.apply_eq_iff_eq]
exact h
/-- The subtype of indices `l` which do contract. -/
def contrSubtype : Type := {i : Fin l.length // ¬ l.NoContr i}
instance : Fintype l.contrSubtype :=
Subtype.fintype fun x => ¬ l.NoContr x
instance : DecidableEq l.contrSubtype :=
Subtype.instDecidableEq
/-!
## Getting the index which contracts with a given index
-/
/-- Given a `i : l.contrSubtype` the proposition on a `j` in `Fin s.length` for
it to be an index of `s` contracting with `i`. -/
def getDualProp (i : l.contrSubtype) (j : Fin l.length) : Prop :=
i.1 ≠ j ∧ l.idMap i.1 = l.idMap j
instance (i : l.contrSubtype) (j : Fin l.length) :
Decidable (l.getDualProp i j) :=
instDecidableAnd
/-- Given a `i : l.contrSubtype` the index of `s` contracting with `i`. -/
def getDualFin (i : l.contrSubtype) : Fin l.length :=
(Fin.find (l.getDualProp i)).get (by simpa [NoContr, Fin.isSome_find_iff] using i.prop)
lemma some_getDualFin_eq_find (i : l.contrSubtype) :
Fin.find (l.getDualProp i) = some (l.getDualFin i) := by
simp [getDualFin]
lemma getDualFin_not_NoContr (i : l.contrSubtype) : ¬ l.NoContr (l.getDualFin i) := by
have h := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h
simp [NoContr]
exact ⟨i.1, And.intro (fun a => h.1.1 a.symm) h.1.2.symm⟩
/-- The dual index of an element of `𝓒.contrSubtype s`, that is the index
contracting with it. -/
def getDual (i : l.contrSubtype) : l.contrSubtype :=
⟨l.getDualFin i, l.getDualFin_not_NoContr i⟩
lemma getDual_id (i : l.contrSubtype) : l.idMap i.1 = l.idMap (l.getDual i).1 := by
simp [getDual]
have h1 := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h1
simp only [getDualProp, ne_eq, and_imp] at h1
exact h1.1.2
lemma getDual_neq_self (i : l.contrSubtype) : i ≠ l.getDual i := by
have h1 := l.some_getDualFin_eq_find i
rw [Fin.find_eq_some_iff] at h1
exact ne_of_apply_ne Subtype.val h1.1.1
/-!
## Index lists with no contracting indices
-/
/-- The proposition on a `IndexList` for it to have no contracting
indices. -/
def HasNoContr : Prop := ∀ i, l.NoContr i
lemma hasNoContr_is_empty (h : l.HasNoContr) : IsEmpty l.contrSubtype := by
rw [_root_.isEmpty_iff]
intro a
exact h a.1 a.1 (fun _ => a.2 (h a.1)) rfl
/-!
## The contracted index list
-/
/-- The index list of those indices of `l` which do not contract. -/
def contrIndexList : IndexList X :=
IndexList.fromFinMap (fun i => l.get (l.noContrSubtypeEquiv.symm i))
@[simp]
lemma contrIndexList_numIndices : l.contrIndexList.numIndices = l.noContrFinset.card := by
simp [contrIndexList]
@[simp]
lemma contrIndexList_idMap_apply (i : Fin l.contrIndexList.numIndices) :
l.contrIndexList.idMap i =
l.idMap (l.noContrSubtypeEquiv.symm (Fin.cast (by simp) i)).1 := by
simp [contrIndexList, IndexList.fromFinMap, IndexList.idMap]
rfl
lemma contrIndexList_hasNoContr : HasNoContr l.contrIndexList := by
intro i
simp [NoContr]
intro j h
refine l.idMap_noContrSubtypeEquiv_neq _ _ ?_
rw [@Fin.ne_iff_vne]
simp only [Fin.coe_cast, ne_eq]
exact Fin.val_ne_of_ne h
/-!
## Pairs of contracting indices
-/
/-- The set of contracting ordered pairs of indices. -/
def contrPairSet : Set (l.contrSubtype × l.contrSubtype) :=
{p | p.1.1 < p.2.1 ∧ l.idMap p.1.1 = l.idMap p.2.1}
lemma getDual_lt_self_mem_contrPairSet {i : l.contrSubtype}
(h : (l.getDual i).1 < i.1) : (l.getDual i, i) ∈ l.contrPairSet :=
And.intro h (l.getDual_id i).symm
lemma getDual_not_lt_self_mem_contrPairSet {i : l.contrSubtype}
(h : ¬ (l.getDual i).1 < i.1) : (i, l.getDual i) ∈ l.contrPairSet := by
apply And.intro
have h1 := l.getDual_neq_self i
simp only [Subtype.coe_lt_coe, gt_iff_lt]
simp at h
exact lt_of_le_of_ne h h1
simp only
exact l.getDual_id i
end IndexList
end IndexNotation