PhysLean/HepLean/PerturbationTheory/Algebras/CrAnAlgebra/NormalOrder.lean
2025-01-22 05:51:52 +00:00

550 lines
24 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Koszul.KoszulSign
/-!
# Normal Ordering in the CrAnAlgebra
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
/-!
## Normal order on the CrAnAlgebra
-/
namespace CrAnAlgebra
noncomputable section
/-- The linear map on the free creation and annihlation
algebra defined as the map taking
a list of CrAnStates to the normal-ordered list of states multiplied by
the sign corresponding to the number of fermionic-fermionic
exchanges done in ordering. -/
def normalOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
normalOrderSign φs • ofCrAnList (normalOrderList φs)
lemma normalOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
rw [← ofListBasis_eq_ofList]
simp only [normalOrder, Basis.constr_basis]
lemma ofCrAnList_eq_normalOrder (φs : List 𝓕.CrAnStates) :
ofCrAnList (normalOrderList φs) = normalOrderSign φs • normalOrder (ofCrAnList φs) := by
rw [normalOrder_ofCrAnList, normalOrderList]
rw [smul_smul]
simp only [normalOrderSign]
rw [Wick.koszulSign_mul_self]
simp
lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
rw [← ofCrAnList_nil, normalOrder_ofCrAnList]
simp
lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φ :: φs)) =
ofCrAnState φ * normalOrder (ofCrAnList φs) := by
rw [normalOrder_ofCrAnList]
rw [normalOrderSign_cons_create φ hφ, normalOrderList_cons_create φ hφ φs]
rw [ofCrAnList_cons, normalOrder_ofCrAnList, mul_smul_comm]
lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create)
(a : CrAnAlgebra 𝓕) :
normalOrder (ofCrAnState φ * a) = ofCrAnState φ * normalOrder a := by
change (normalOrder ∘ₗ mulLinearMap (ofCrAnState φ)) a =
(mulLinearMap (ofCrAnState φ) ∘ₗ normalOrder) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply]
rw [← ofCrAnList_cons]
rw [normalOrder_ofCrAnList_cons_create φ hφ]
lemma normalOrder_ofCrAnList_append_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φs ++ [φ])) =
normalOrder (ofCrAnList φs) * ofCrAnState φ := by
rw [normalOrder_ofCrAnList]
rw [normalOrderSign_append_annihlate φ hφ φs, normalOrderList_append_annihilate φ hφ φs]
rw [ofCrAnList_append, ofCrAnList_singleton, normalOrder_ofCrAnList, smul_mul_assoc]
lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
(a : CrAnAlgebra 𝓕) :
normalOrder (a * ofCrAnState φ) = normalOrder a * ofCrAnState φ := by
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φ)) a =
(mulLinearMap.flip (ofCrAnState φ) ∘ₗ normalOrder) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk]
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton]
rw [normalOrder_ofCrAnList_append_annihilate φ hφ]
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa]
rw [← smul_smul, ← normalOrder_ofCrAnList]
congr
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
noncomm_ring
lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (a * ofCrAnState φa * ofCrAnState φc * b) := by
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
apply LinearMap.congr_fun
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1]
repeat rw [← mul_assoc]
rw [normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
rw [← mul_assoc, ← mul_assoc]
rw [normalOrder_swap_create_annihlate φc φa hφc hφa]
simp only [FieldStatistic.instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
map_smul, sub_self]
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
apply Or.inr
exact normalOrder_superCommute_create_annihilate φc φa hφc hφa a b
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
crPart (StateAlgebra.ofState φ) * normalOrder a := by
match φ with
| .negAsymp φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
exact normalOrder_create_mul ⟨States.negAsymp φ, ()⟩ rfl a
| .position φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_create_mul _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
simp
lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
normalOrder a * anPart (StateAlgebra.ofState φ) := by
match φ with
| .negAsymp φ =>
simp
| .position φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
normalOrder (a * (anPart (StateAlgebra.ofState φ')) *
(crPart (StateAlgebra.ofState φ)) * b) := by
match φ, φ' with
| _, .negAsymp φ' =>
simp
| .posAsymp φ, _ =>
simp
| .position φ, .position φ' =>
simp only [crPart_position, anPart_position, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
| .negAsymp φ, .posAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
| .negAsymp φ, .position φ' =>
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
| .position φ, .posAsymp φ' =>
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
(anPart (StateAlgebra.ofState φ)) * b) := by
rw [normalOrder_swap_crPart_anPart]
rw [smul_smul, FieldStatistic.exchangeSign_symm, FieldStatistic.exchangeSign_mul_self]
simp
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * superCommute
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
match φ, φ' with
| _, .negAsymp φ' =>
simp
| .posAsymp φ', _ =>
simp
| .position φ, .position φ' =>
simp only [crPart_position, anPart_position]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
| .negAsymp φ, .posAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
| .negAsymp φ, .position φ' =>
simp only [crPart_negAsymp, anPart_position]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
| .position φ, .posAsymp φ' =>
simp only [crPart_position, anPart_posAsymp]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * superCommute
(anPart (StateAlgebra.ofState φ)) (crPart (StateAlgebra.ofState φ')) * b) = 0 := by
match φ, φ' with
| .negAsymp φ', _ =>
simp
| _, .posAsymp φ' =>
simp
| .position φ, .position φ' =>
simp only [anPart_position, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
| .posAsymp φ', .negAsymp φ =>
simp only [anPart_posAsymp, crPart_negAsymp]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
| .position φ', .negAsymp φ =>
simp only [anPart_position, crPart_negAsymp]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
| .posAsymp φ, .position φ' =>
simp only [anPart_posAsymp, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
(normalOrder (ofCrAnList φs *
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
normalOrderSign (φs ++ φc' :: φc :: φs') •
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
enter [2, 1, 2]
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← annihilateFilter_append]
conv_lhs =>
rhs
rhs
rw [smul_mul_assoc]
rw [Algebra.mul_smul_comm, smul_mul_assoc]
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
rhs
rw [map_smul]
rhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
enter [2, 1, 2]
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
List.append_nil, Algebra.smul_mul_assoc]
rw [← annihilateFilter_append]
conv_lhs =>
lhs
lhs
simp
conv_lhs =>
rhs
rhs
lhs
simp
rw [normalOrderSign_swap_create_create φc φc' hφc hφc']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
rhs
rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← smul_mul_assoc, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
rw [← sub_mul, ← sub_mul, ← mul_sub]
congr
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
(φa φa' : 𝓕.CrAnStates)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
(normalOrder (ofCrAnList φs *
superCommute (ofCrAnState φa) (ofCrAnState φa') * ofCrAnList φs')) =
normalOrderSign (φs ++ φa' :: φa :: φs') •
(ofCrAnList (createFilter (φs ++ φs'))
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
* ofCrAnList (annihilateFilter φs')) := by
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
enter [2, 1, 1]
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← createFilter_append]
conv_lhs =>
rhs
rhs
rw [smul_mul_assoc]
rw [Algebra.mul_smul_comm, smul_mul_assoc]
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
rhs
rw [map_smul]
rhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
enter [2, 1, 1]
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
List.append_nil, Algebra.smul_mul_assoc]
rw [← createFilter_append]
conv_lhs =>
lhs
lhs
simp
conv_lhs =>
rhs
rhs
lhs
simp
rw [normalOrderSign_swap_annihilate_annihilate φa φa' hφa hφa']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
rhs
rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← Algebra.mul_smul_comm, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
rw [← mul_sub, ← sub_mul, ← mul_sub]
apply congrArg
conv_rhs => rw [mul_assoc, mul_assoc]
apply congrArg
rw [mul_assoc]
apply congrArg
congr
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
@[simp]
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
rw [normalOrder_crPart_mul, normalOrder_one]
simp
@[simp]
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_mul_anPart]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
@[simp]
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
@[simp]
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
crPart (StateAlgebra.ofState φ')))]
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
simp
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
normalOrder (ofState φ * ofState φ') =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel
lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
ofCrAnList φs * normalOrder (ofCrAnList φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofCrAnList φs') * ofCrAnList φs := by
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
smul_sub, smul_smul, mul_comm]
lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca =
ofCrAnList φs * normalOrder (ofStateList φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs := by
rw [ofStateList_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
← Finset.sum_sub_distrib, map_sum]
congr
funext n
rw [ofCrAnList_superCommute_normalOrder_ofCrAnList,
CrAnSection.statistics_eq_state_statistics]
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnList φs * normalOrder (ofStateList φs') =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs
+ ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca := by
rw [ofCrAnList_superCommute_normalOrder_ofStateList]
simp
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnState φ * normalOrder (ofStateList φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnState φ
+ ⟨ofCrAnState φ, normalOrder (ofStateList φs')⟩ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
simp [ofCrAnList_singleton]
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
(φs' : List 𝓕.States) :
anPart (StateAlgebra.ofState φ) * normalOrder (ofStateList φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs' * anPart (StateAlgebra.ofState φ))
+ ⟨anPart (StateAlgebra.ofState φ), normalOrder (ofStateList φs')⟩ₛca := by
rw [normalOrder_mul_anPart]
match φ with
| .negAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
rw [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute]
simp [crAnStatistics]
| .posAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
rw [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute]
simp [crAnStatistics]
end
end CrAnAlgebra
end FieldSpecification