136 lines
6.6 KiB
Text
136 lines
6.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Meta.Informal
|
||
/-!
|
||
|
||
# Weyl fermions
|
||
|
||
-/
|
||
|
||
/-!
|
||
|
||
## The definition of Weyl fermion vector spaces.
|
||
|
||
We define the vector spaces corresponding to different types of Weyl fermions.
|
||
|
||
Note: We should prevent casting between these vector spaces.
|
||
-/
|
||
|
||
informal_definition leftHandedWeylFermion where
|
||
math :≈ "The vector space ℂ^2 carrying the fundamental representation of SL(2,C)."
|
||
physics :≈ "A Weyl fermion with indices ψ_a."
|
||
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
|
||
|
||
informal_definition rightHandedWeylFermion where
|
||
math :≈ "The vector space ℂ^2 carrying the conjguate representation of SL(2,C)."
|
||
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
|
||
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
|
||
|
||
informal_definition altLeftHandedWeylFermion where
|
||
math :≈ "The vector space ℂ^2 carrying the representation of SL(2,C) given by
|
||
M → (M⁻¹)ᵀ."
|
||
physics :≈ "A Weyl fermion with indices ψ^a."
|
||
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
|
||
|
||
informal_definition altRightHandedWeylFermion where
|
||
math :≈ "The vector space ℂ^2 carrying the representation of SL(2,C) given by
|
||
M → (M⁻¹)^†."
|
||
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
|
||
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
|
||
|
||
/-!
|
||
|
||
## Equivalences between Weyl fermion vector spaces.
|
||
|
||
-/
|
||
|
||
informal_definition leftHandedWeylFermionAltEquiv where
|
||
math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given
|
||
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
|
||
deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion]
|
||
|
||
informal_lemma leftHandedWeylFermionAltEquiv_equivariant where
|
||
math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the
|
||
action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
|
||
deps :≈ [`leftHandedWeylFermionAltEquiv]
|
||
|
||
informal_definition rightHandedWeylFermionAltEquiv where
|
||
math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given
|
||
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
|
||
deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion]
|
||
|
||
informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
|
||
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
|
||
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
|
||
deps :≈ [`rightHandedWeylFermionAltEquiv]
|
||
|
||
/-!
|
||
|
||
## Contraction of Weyl fermions.
|
||
|
||
-/
|
||
|
||
informal_definition leftAltWeylFermionContraction where
|
||
math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to ℂ given by
|
||
summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the
|
||
standard basis (i.e. the dot product)."
|
||
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
|
||
In index notation this is ψ_a φ^a."
|
||
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
|
||
|
||
informal_lemma leftAltWeylFermionContraction_invariant where
|
||
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
|
||
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
|
||
deps :≈ [``leftAltWeylFermionContraction]
|
||
|
||
informal_definition altLeftWeylFermionContraction where
|
||
math :≈ "The linear map from altLeftHandedWeylFermion ⊗ leftHandedWeylFermion to ℂ given by
|
||
summing over components of altLeftHandedWeylFermion and leftHandedWeylFermion in the
|
||
standard basis (i.e. the dot product)."
|
||
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
|
||
In index notation this is φ^a ψ_a ."
|
||
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
|
||
|
||
informal_lemma leftAltWeylFermionContraction_symm_altLeftWeylFermionContraction where
|
||
math :≈ "The linear map altLeftWeylFermionContraction is leftAltWeylFermionContraction composed
|
||
with the braiding of the tensor product."
|
||
deps :≈ [``leftAltWeylFermionContraction, ``altLeftWeylFermionContraction]
|
||
|
||
informal_lemma altLeftWeylFermionContraction_invariant where
|
||
math :≈ "The contraction altLeftWeylFermionContraction is invariant with respect to
|
||
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
|
||
deps :≈ [``altLeftWeylFermionContraction]
|
||
|
||
informal_definition rightAltWeylFermionContraction where
|
||
math :≈ "The linear map from rightHandedWeylFermion ⊗ altRightHandedWeylFermion to ℂ given by
|
||
summing over components of rightHandedWeylFermion and altRightHandedWeylFermion in the
|
||
standard basis (i.e. the dot product)."
|
||
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
|
||
In index notation this is ψ_{dot a} φ^{dot a}."
|
||
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
|
||
|
||
informal_lemma rightAltWeylFermionContraction_invariant where
|
||
math :≈ "The contraction rightAltWeylFermionContraction is invariant with respect to
|
||
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
|
||
deps :≈ [``rightAltWeylFermionContraction]
|
||
|
||
informal_definition altRightWeylFermionContraction where
|
||
math :≈ "The linear map from altRightHandedWeylFermion ⊗ rightHandedWeylFermion to ℂ given by
|
||
summing over components of altRightHandedWeylFermion and rightHandedWeylFermion in the
|
||
standard basis (i.e. the dot product)."
|
||
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
|
||
In index notation this is φ^{dot a} ψ_{dot a}."
|
||
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
|
||
|
||
informal_lemma rightAltWeylFermionContraction_symm_altRightWeylFermionContraction where
|
||
math :≈ "The linear map altRightWeylFermionContraction is rightAltWeylFermionContraction composed
|
||
with the braiding of the tensor product."
|
||
deps :≈ [``rightAltWeylFermionContraction, ``altRightWeylFermionContraction]
|
||
|
||
informal_lemma altRightWeylFermionContraction_invariant where
|
||
math :≈ "The contraction altRightWeylFermionContraction is invariant with respect to
|
||
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
|
||
deps :≈ [``altRightWeylFermionContraction]
|