PhysLean/HepLean/SpaceTime/WeylFermion/Basic.lean
2024-09-18 07:41:48 -04:00

136 lines
6.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
/-!
# Weyl fermions
-/
/-!
## The definition of Weyl fermion vector spaces.
We define the vector spaces corresponding to different types of Weyl fermions.
Note: We should prevent casting between these vector spaces.
-/
informal_definition leftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition rightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altLeftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
physics :≈ "A Weyl fermion with indices ψ^a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altRightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
/-!
## Equivalences between Weyl fermion vector spaces.
-/
informal_definition leftHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion]
informal_lemma leftHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [`leftHandedWeylFermionAltEquiv]
informal_definition rightHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion]
informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [`rightHandedWeylFermionAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
informal_definition leftAltWeylFermionContraction where
math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to given by
summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_invariant where
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``leftAltWeylFermionContraction]
informal_definition altLeftWeylFermionContraction where
math :≈ "The linear map from altLeftHandedWeylFermion ⊗ leftHandedWeylFermion to given by
summing over components of altLeftHandedWeylFermion and leftHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is φ^a ψ_a ."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_symm_altLeftWeylFermionContraction where
math :≈ "The linear map altLeftWeylFermionContraction is leftAltWeylFermionContraction composed
with the braiding of the tensor product."
deps :≈ [``leftAltWeylFermionContraction, ``altLeftWeylFermionContraction]
informal_lemma altLeftWeylFermionContraction_invariant where
math :≈ "The contraction altLeftWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``altLeftWeylFermionContraction]
informal_definition rightAltWeylFermionContraction where
math :≈ "The linear map from rightHandedWeylFermion ⊗ altRightHandedWeylFermion to given by
summing over components of rightHandedWeylFermion and altRightHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
informal_lemma rightAltWeylFermionContraction_invariant where
math :≈ "The contraction rightAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``rightAltWeylFermionContraction]
informal_definition altRightWeylFermionContraction where
math :≈ "The linear map from altRightHandedWeylFermion ⊗ rightHandedWeylFermion to given by
summing over components of altRightHandedWeylFermion and rightHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
deps :≈ [``rightHandedWeylFermion, ``altRightHandedWeylFermion]
informal_lemma rightAltWeylFermionContraction_symm_altRightWeylFermionContraction where
math :≈ "The linear map altRightWeylFermionContraction is rightAltWeylFermionContraction composed
with the braiding of the tensor product."
deps :≈ [``rightAltWeylFermionContraction, ``altRightWeylFermionContraction]
informal_lemma altRightWeylFermionContraction_invariant where
math :≈ "The contraction altRightWeylFermionContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [``altRightWeylFermionContraction]