287 lines
15 KiB
Text
287 lines
15 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Elab
|
||
import HepLean.Tensors.ComplexLorentz.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||
import HepLean.Tensors.ComplexLorentz.Basis
|
||
/-!
|
||
|
||
## Basis trees
|
||
|
||
When contracting e.g. Pauli matrices with other tensors, it is sometimes convienent
|
||
to rewrite the contraction in terms of a basis.
|
||
|
||
The lemmas in this file allow us to do this.
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
|
||
noncomputable section
|
||
|
||
namespace complexLorentzTensor
|
||
open Fermion
|
||
|
||
/-!
|
||
|
||
## Tree expansions for Pauli matrices.
|
||
|
||
-/
|
||
|
||
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
|
||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
||
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||
|
||
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(t : TensorTree complexLorentzTensor c) :
|
||
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||
((TensorTree.smul I ((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||
((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
||
(TensorTree.smul (-1) (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR]
|
||
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
||
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
||
rw [prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
/- Moving smuls. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
||
rfl
|
||
|
||
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) =
|
||
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||
(contr i j h (TensorTree.prod t
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor =
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
||
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR]
|
||
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
||
/- Moving contr over add. -/
|
||
rw [contr_add]
|
||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
/- Moving contr over smul. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
contr_smul _ _]
|
||
|
||
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||
((pauliMatrixContrMap c) i))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
||
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
|
||
(finSumFinEquiv.symm i))
|
||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
||
(basisVector c' (b' 0 0 0))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
||
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
||
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||
rw [contr_pauliMatrix_basis_tree_expand]
|
||
/- Product of basis vectors . -/
|
||
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rfl
|
||
|
||
/-- The map to color which appears when contracting a basis vector with
|
||
puali matrices. -/
|
||
def pauliMatrixBasisProdMap
|
||
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
||
(i : Fin (n + (Nat.succ 0).succ.succ)) →
|
||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
|
||
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
||
(finSumFinEquiv.symm i))
|
||
|
||
/-- The new basis vectors which appear when contracting pauli matrices with
|
||
basis vectors. -/
|
||
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||
(i1 i2 i3 : Fin 4) :=
|
||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||
(i.succAbove (j.succAbove k))
|
||
basisVector c' (b' i1 i2 i3)
|
||
|
||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||
((pauliMatrixContrMap c) i))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||
(i.succAbove (j.succAbove k))
|
||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor =
|
||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0))
|
||
(tensorNode (basisVector c' (b' 0 0 0))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1))
|
||
(tensorNode (basisVector c' (b' 0 1 1))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1))
|
||
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
|
||
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
||
((TensorTree.smul (-I) ((TensorTree.smul
|
||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
|
||
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||
((TensorTree.smul I ((TensorTree.smul
|
||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
|
||
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
|
||
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
||
(TensorTree.smul (-1) ((TensorTree.smul
|
||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
|
||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||
/- Contracting basis vectors. -/
|
||
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
||
<| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
smul_tensor_eq <| contr_basisVector_tree _]
|
||
rfl
|
||
|
||
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||
((pauliMatrixContrMap c) i))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor =
|
||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
|
||
(basisVectorContrPauli i j b 0 0 0)
|
||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
|
||
(basisVectorContrPauli i j b 0 1 1)
|
||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
|
||
(basisVectorContrPauli i j b 1 0 1)
|
||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
|
||
(basisVectorContrPauli i j b 1 1 0)
|
||
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
|
||
(basisVectorContrPauli i j b 2 0 1)
|
||
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
|
||
(basisVectorContrPauli i j b 2 1 0)
|
||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
|
||
(basisVectorContrPauli i j b 3 0 0)
|
||
+ (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
|
||
(basisVectorContrPauli i j b 3 1 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
|
||
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
|
||
tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg]
|
||
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||
rfl
|
||
|
||
end complexLorentzTensor
|
||
|
||
end
|