74 lines
3.1 KiB
Text
74 lines
3.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Basic
|
||
/-!
|
||
|
||
# Commuting products
|
||
|
||
The results here follow from the properties of braided categories and braided functors.
|
||
-/
|
||
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open OverColor
|
||
open HepLean.Fin
|
||
|
||
namespace TensorTree
|
||
|
||
variable {S : TensorSpecies} {n n2 : ℕ}
|
||
(c : Fin n → S.C) (c2 : Fin n2 → S.C)
|
||
|
||
/-- The permutation that arises when moving a commuting terms in a `prod` node.
|
||
This permutation is defined using braiding and composition with `finSumFinEquiv`
|
||
based-isomorphisms. -/
|
||
def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
|
||
OverColor.mk (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) :=
|
||
(equivToIso finSumFinEquiv).inv ≫
|
||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||
≫ (equivToIso finSumFinEquiv).hom
|
||
|
||
lemma finSumFinEquiv_comp_braidPerm :
|
||
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
|
||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||
≫ (equivToIso finSumFinEquiv).hom := by
|
||
rw [braidPerm]
|
||
simp only [Functor.id_obj, mk_hom, Iso.hom_inv_id_assoc]
|
||
|
||
/-- The arguments of a `prod` node can be commuted using braiding. -/
|
||
theorem prod_comm (t : TensorTree S c) (t2 : TensorTree S c2) :
|
||
(prod t t2).tensor = (perm (braidPerm c c2) (prod t2 t)).tensor := by
|
||
rw [perm_tensor]
|
||
nth_rewrite 2 [prod_tensor]
|
||
change _ = (S.F.map (equivToIso finSumFinEquiv).hom ≫ S.F.map (braidPerm c c2)).hom
|
||
((S.F.μ (OverColor.mk c2) (OverColor.mk c)).hom (t2.tensor ⊗ₜ[S.k] t.tensor))
|
||
rw [← S.F.map_comp]
|
||
rw [finSumFinEquiv_comp_braidPerm]
|
||
rw [S.F.map_comp]
|
||
simp only [BraidedFunctor.braided, Category.assoc, Action.comp_hom,
|
||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
ModuleCat.coe_comp, Function.comp_apply]
|
||
rw [prod_tensor]
|
||
apply congrArg
|
||
apply congrArg
|
||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||
((inv (lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
||
((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
lift.objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
|
||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, IsIso.Iso.inv_hom]
|
||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||
(((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
||
(lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Iso.hom_inv_id, Action.id_hom,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, lift.objObj'_V_carrier, mk_hom,
|
||
ModuleCat.id_apply]
|
||
rfl
|
||
|
||
end TensorTree
|