176 lines
6.5 KiB
Text
176 lines
6.5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||
import Mathlib.LinearAlgebra.CliffordAlgebra.Basic
|
||
/-!
|
||
# Spacetime Metric
|
||
|
||
This file introduces the metric on spacetime in the (+, -, -, -) signature.
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
namespace spaceTime
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
/-- The metric as a `4×4` real matrix. -/
|
||
def η : Matrix (Fin 4) (Fin 4) ℝ :=
|
||
![![1, 0, 0, 0], ![0, -1, 0, 0], ![0, 0, -1, 0], ![0, 0, 0, -1]]
|
||
|
||
lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by
|
||
fin_cases μ <;>
|
||
fin_cases ν <;>
|
||
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||
vecHead, vecTail, Function.comp_apply]
|
||
|
||
lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by
|
||
by_cases h : μ = ν
|
||
rw [h]
|
||
rw [η_off_diagonal h]
|
||
refine (η_off_diagonal ?_).symm
|
||
exact fun a => h (id a.symm)
|
||
|
||
lemma η_transpose : η.transpose = η := by
|
||
funext μ ν
|
||
rw [transpose_apply, η_symmetric]
|
||
|
||
lemma det_η : η.det = - 1 := by
|
||
simp only [η, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val',
|
||
empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply, Fin.succ_zero_eq_one,
|
||
cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply, Fin.succ_one_eq_two,
|
||
cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ, head_fin_const,
|
||
Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove, Finset.univ_unique,
|
||
Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul, Fin.succ_succAbove_zero,
|
||
Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one, even_two, Even.neg_pow,
|
||
one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero, zero_mul,
|
||
Finset.sum_const_zero]
|
||
|
||
|
||
lemma η_sq : η * η = 1 := by
|
||
funext μ ν
|
||
rw [mul_apply, Fin.sum_univ_four]
|
||
fin_cases μ <;> fin_cases ν <;>
|
||
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||
vecHead, vecTail, Function.comp_apply]
|
||
|
||
|
||
|
||
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
|
||
rw [explicit x]
|
||
rw [η]
|
||
funext i
|
||
rw [mulVec, dotProduct, Fin.sum_univ_four]
|
||
fin_cases i <;>
|
||
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||
vecHead, vecTail, Function.comp_apply]
|
||
|
||
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
|
||
@[simps!]
|
||
def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[ℝ] ℝ where
|
||
toFun y := x ⬝ᵥ (η *ᵥ y)
|
||
map_add' y z := by
|
||
simp only
|
||
rw [mulVec_add, dotProduct_add]
|
||
map_smul' c y := by
|
||
simp only
|
||
rw [mulVec_smul, dotProduct_smul]
|
||
rfl
|
||
|
||
/-- The metric as a bilinear map from `spaceTime` to `ℝ`. -/
|
||
@[simps!]
|
||
def ηLin : LinearMap.BilinForm ℝ spaceTime where
|
||
toFun x := linearMapForSpaceTime x
|
||
map_add' x y := by
|
||
apply LinearMap.ext
|
||
intro z
|
||
simp only [linearMapForSpaceTime_apply, LinearMap.add_apply]
|
||
rw [add_dotProduct]
|
||
map_smul' c x := by
|
||
apply LinearMap.ext
|
||
intro z
|
||
simp only [linearMapForSpaceTime_apply, RingHom.id_apply, LinearMap.smul_apply, smul_eq_mul]
|
||
rw [smul_dotProduct]
|
||
rfl
|
||
|
||
lemma ηLin_expand (x y : spaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 * y 2 - x 3 * y 3 := by
|
||
rw [ηLin]
|
||
simp only [LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, Fin.isValue]
|
||
erw [η_mulVec]
|
||
nth_rewrite 1 [explicit x]
|
||
simp only [dotProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.sum_univ_four,
|
||
cons_val_zero, cons_val_one, head_cons, mul_neg, cons_val_two, tail_cons, cons_val_three]
|
||
ring
|
||
|
||
lemma ηLin_symm (x y : spaceTime) : ηLin x y = ηLin y x := by
|
||
rw [ηLin_expand, ηLin_expand]
|
||
ring
|
||
|
||
lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x = η μ μ * x μ := by
|
||
rw [ηLin_expand]
|
||
fin_cases μ
|
||
<;> simp [stdBasis_0, stdBasis_1, stdBasis_2, stdBasis_3, η]
|
||
|
||
|
||
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
|
||
rw [ηLin_stdBasis_apply]
|
||
by_cases h : μ = ν
|
||
rw [stdBasis_apply]
|
||
subst h
|
||
simp only [↓reduceIte, mul_one]
|
||
rw [stdBasis_not_eq, η_off_diagonal h]
|
||
simp only [mul_zero]
|
||
exact fun a => h (id a.symm)
|
||
|
||
lemma ηLin_mulVec_left (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||
ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by
|
||
simp only [ηLin_apply_apply, mulVec_mulVec]
|
||
rw [(vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec]
|
||
rw [← mul_assoc, ← mul_assoc, η_sq, one_mul]
|
||
|
||
lemma ηLin_mulVec_right (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||
ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by
|
||
rw [ηLin_symm, ηLin_symm ((η * Λᵀ * η) *ᵥ x) _ ]
|
||
exact ηLin_mulVec_left y x Λ
|
||
|
||
lemma ηLin_matrix_stdBasis (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||
ηLin (stdBasis ν) (Λ *ᵥ stdBasis μ) = η ν ν * Λ ν μ := by
|
||
rw [ηLin_stdBasis_apply, stdBasis_mulVec]
|
||
|
||
lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||
Λ = 1 ↔ ∀ (x y : spaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by
|
||
apply Iff.intro
|
||
intro h
|
||
subst h
|
||
simp only [ηLin_apply_apply, one_mulVec, implies_true]
|
||
intro h
|
||
funext μ ν
|
||
have h1 := h (stdBasis μ) (stdBasis ν)
|
||
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
|
||
fin_cases μ <;> fin_cases ν <;>
|
||
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
|
||
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
|
||
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
|
||
vecHead, vecTail, Function.comp_apply]
|
||
|
||
/-- The metric as a quadratic form on `spaceTime`. -/
|
||
def quadraticForm : QuadraticForm ℝ spaceTime := ηLin.toQuadraticForm
|
||
|
||
|
||
end spaceTime
|
||
|
||
end
|