78 lines
3.9 KiB
Text
78 lines
3.9 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Basic
|
||
import LLMLean
|
||
/-!
|
||
|
||
# Swapping permutations and contractions
|
||
|
||
The results here follow from the properties of Monoidal categories and monoidal functors.
|
||
-/
|
||
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open OverColor
|
||
open HepLean.Fin
|
||
|
||
namespace TensorTree
|
||
|
||
variable {S : TensorStruct} {n n' n2 : ℕ}
|
||
{c : Fin n → S.C} {c' : Fin n' → S.C} (c2 : Fin n2 → S.C)
|
||
(σ : OverColor.mk c ⟶ OverColor.mk c')
|
||
|
||
/-- The permutation that arises when moving a `perm` node in the left entry through a `prod` node.
|
||
This permutation is defined using right-whiskering and composition with `finSumFinEquiv`
|
||
based-isomorphisms. -/
|
||
def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2 ≫ (equivToIso finSumFinEquiv).hom
|
||
|
||
/-- The permutation that arises when moving a `perm` node in the right entry through a `prod` node.
|
||
This permutation is defined using left-whiskering and composition with `finSumFinEquiv`
|
||
based-isomorphisms. -/
|
||
def permProdRight:= (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ ≫ (equivToIso finSumFinEquiv).hom
|
||
|
||
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
|
||
the `prod` node via right-whiskering. -/
|
||
theorem prod_perm_left (t : TensorTree S c) (t2 : TensorTree S c2) :
|
||
(prod (perm σ t) t2).tensor = (perm (permProdLeft c2 σ) (prod t t2)).tensor := by
|
||
simp only [prod_tensor, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, perm_tensor]
|
||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||
(((S.F.map (σ) ▷ S.F.obj (OverColor.mk c2)) ≫
|
||
S.F.μ (OverColor.mk c') (OverColor.mk c2)).hom (t.tensor ⊗ₜ[S.k] t2.tensor)) = _
|
||
rw [S.F.μ_natural_left]
|
||
simp only [Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Function.comp_apply]
|
||
change (S.F.map (σ ▷ OverColor.mk c2) ≫ S.F.map (equivToIso finSumFinEquiv).hom).hom _ = _
|
||
rw [← S.F.map_comp, ← (Iso.hom_inv_id_assoc (equivToIso finSumFinEquiv)
|
||
(σ ▷ OverColor.mk c2 ≫ (equivToIso finSumFinEquiv).hom)), S.F.map_comp]
|
||
rfl
|
||
|
||
/-- When a `prod` acts on a `perm` node in the right entry, the `perm` node can be moved through
|
||
the `prod` node via left-whiskering. -/
|
||
theorem prod_perm_right (t2 : TensorTree S c2) (t : TensorTree S c) :
|
||
(prod t2 (perm σ t)).tensor = (perm (permProdRight c2 σ) (prod t2 t)).tensor := by
|
||
simp only [prod_tensor, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, perm_tensor]
|
||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||
(((S.F.obj (OverColor.mk c2) ◁ S.F.map σ) ≫ S.F.μ (OverColor.mk c2) (OverColor.mk c')).hom
|
||
(t2.tensor ⊗ₜ[S.k] t.tensor)) = _
|
||
rw [S.F.μ_natural_right]
|
||
simp only [Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Function.comp_apply]
|
||
change (S.F.map (OverColor.mk c2 ◁ σ) ≫ S.F.map (equivToIso finSumFinEquiv).hom).hom _ = _
|
||
rw [← S.F.map_comp]
|
||
have hx : OverColor.mk c2 ◁ σ ≫ (equivToIso finSumFinEquiv).hom =
|
||
(equivToIso finSumFinEquiv).hom ≫ (permProdRight c2 σ) := by
|
||
simp only [Functor.id_obj, mk_hom, permProdRight, Iso.hom_inv_id_assoc]
|
||
rw [hx, S.F.map_comp]
|
||
rfl
|
||
|
||
end TensorTree
|