101 lines
4 KiB
Text
101 lines
4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic
|
||
import PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction
|
||
import Mathlib.Analysis.CStarAlgebra.Matrix
|
||
/-!
|
||
|
||
# Gauge orbits for the 2HDM
|
||
|
||
The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.
|
||
|
||
-/
|
||
|
||
namespace TwoHDM
|
||
|
||
open StandardModel
|
||
open ComplexConjugate
|
||
open HiggsField
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open SpaceTime
|
||
|
||
noncomputable section
|
||
|
||
/-- For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||
defined by `((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂))`. -/
|
||
def prodMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
!![⟪Φ1, Φ1⟫_H x, ⟪Φ2, Φ1⟫_H x; ⟪Φ1, Φ2⟫_H x, ⟪Φ2, Φ2⟫_H x]
|
||
|
||
/-- The 2 x 2 complex matrices made up of components of the two Higgs fields. -/
|
||
def fieldCompMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
!![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1]
|
||
|
||
/-- The matrix `prodMatrix Φ1 Φ2 x` is equal to the square of `fieldCompMatrix Φ1 Φ2 x`. -/
|
||
lemma prodMatrix_eq_fieldCompMatrix_sq (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
prodMatrix Φ1 Φ2 x = fieldCompMatrix Φ1 Φ2 x * (fieldCompMatrix Φ1 Φ2 x).conjTranspose := by
|
||
rw [fieldCompMatrix]
|
||
trans !![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1] *
|
||
!![conj (Φ1 x 0), conj (Φ2 x 0); conj (Φ1 x 1), conj (Φ2 x 1)]
|
||
· rw [Matrix.mul_fin_two, prodMatrix, innerProd_expand', innerProd_expand', innerProd_expand',
|
||
innerProd_expand']
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;> ring_nf
|
||
· funext i j
|
||
fin_cases i <;> fin_cases j <;> rfl
|
||
|
||
/-- An instance of `PartialOrder` on `ℂ` defined through `Complex.partialOrder`. -/
|
||
local instance : PartialOrder ℂ := Complex.partialOrder
|
||
|
||
/-- An instance of `NormedAddCommGroup` on `Matrix (Fin 2) (Fin 2) ℂ` defined through
|
||
`Matrix.normedAddCommGroup`. -/
|
||
local instance : NormedAddCommGroup (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
Matrix.normedAddCommGroup
|
||
|
||
/-- An instance of `NormedSpace` on `Matrix (Fin 2) (Fin 2) ℂ` defined through
|
||
`Matrix.normedSpace`. -/
|
||
local instance : NormedSpace ℝ (Matrix (Fin 2) (Fin 2) ℂ) := Matrix.normedSpace
|
||
|
||
/-- The matrix `prodMatrix` is positive semi-definite. -/
|
||
lemma prodMatrix_posSemiDef (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
(prodMatrix Φ1 Φ2 x).PosSemidef := by
|
||
rw [Matrix.posSemidef_iff_eq_transpose_mul_self]
|
||
use (fieldCompMatrix Φ1 Φ2 x).conjTranspose
|
||
simpa using prodMatrix_eq_fieldCompMatrix_sq Φ1 Φ2 x
|
||
|
||
/-- The matrix `prodMatrix` is hermitian. -/
|
||
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
(prodMatrix Φ1 Φ2 x).IsHermitian := (prodMatrix_posSemiDef Φ1 Φ2 x).isHermitian
|
||
|
||
/-- The map `prodMatrix` is a smooth function on spacetime. -/
|
||
lemma prodMatrix_smooth (Φ1 Φ2 : HiggsField) :
|
||
ContMDiff 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Matrix (Fin 2) (Fin 2) ℂ) ⊤ (prodMatrix Φ1 Φ2) := by
|
||
rw [show 𝓘(ℝ, Matrix (Fin 2) (Fin 2) ℂ) = modelWithCornersSelf ℝ (Fin 2 → Fin 2 → ℂ) from rfl,
|
||
contMDiff_pi_space]
|
||
intro i
|
||
rw [contMDiff_pi_space]
|
||
intro j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simpa only [prodMatrix, Fin.zero_eta, Fin.isValue, of_apply, cons_val', cons_val_zero,
|
||
empty_val', cons_val_fin_one] using smooth_innerProd _ _
|
||
|
||
/-- The map `prodMatrix` is invariant under the simultaneous action of `gaugeAction` on the two
|
||
Higgs fields. -/
|
||
informal_lemma prodMatrix_invariant where
|
||
deps := [``prodMatrix, ``gaugeAction]
|
||
|
||
/-- Given any smooth map `f` from spacetime to 2-by-2 complex matrices landing on positive
|
||
semi-definite matrices, there exist smooth Higgs fields `Φ1` and `Φ2` such that `f` is equal to
|
||
`prodMatrix Φ1 Φ2`.
|
||
|
||
See https://arxiv.org/pdf/hep-ph/0605184
|
||
-/
|
||
informal_lemma prodMatrix_to_higgsField where
|
||
deps := [``prodMatrix, ``HiggsField, ``prodMatrix_smooth]
|
||
|
||
end
|
||
end TwoHDM
|