PhysLean/HepLean/PerturbationTheory/WicksTheorem.lean
2025-01-24 05:19:04 +00:00

370 lines
17 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.TimeContract
import HepLean.Meta.Remark.Basic
/-!
# Wick's theorem
This file contrains the time-dependent version of Wick's theorem
for lists of fields containing both fermions and bosons.
Wick's theorem is related to Isserlis' theorem in mathematics.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification} {𝓞 : 𝓕.ProtoOperatorAlgebra}
open CrAnAlgebra
open StateAlgebra
open ProtoOperatorAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
We have (roughly) `N(c.insertList φ i none).uncontractedList = s • N(φ * c.uncontractedList)`
Where `s` is the exchange sign for `φ` and the uncontracted fields in `φ₀φ₁…φᵢ`.
-/
lemma insertList_none_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) :
𝓞.crAnF (𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i none).uncontractedList)))
= 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, c.uncontracted.filter (fun x => i.succAbove x < i)⟩) •
𝓞.crAnF (𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by
simp only [Nat.succ_eq_add_one, instCommGroup.eq_1, optionEraseZ]
rw [crAnF_ofState_normalOrder_insert φ (c.uncontractedList.map φs.get)
⟨(c.uncontractedListOrderPos i), by simp⟩, smul_smul]
trans (1 : ) • 𝓞.crAnF (𝓝(ofStateList
(List.map (List.insertIdx (↑i) φ φs).get (insertList φ c i none).uncontractedList)))
· simp
congr 1
simp only [instCommGroup.eq_1]
rw [← List.map_take, take_uncontractedListOrderPos_eq_filter]
have h1 : (𝓕 |>ₛ List.map φs.get (List.filter (fun x => decide (↑x < i.1)) c.uncontractedList))
= 𝓕 |>ₛ ⟨φs.get, (c.uncontracted.filter (fun x => x.val < i.1))⟩ := by
simp only [Nat.succ_eq_add_one, ofFinset]
congr
rw [uncontractedList_eq_sort]
have hdup : (List.filter (fun x => decide (x.1 < i.1))
(Finset.sort (fun x1 x2 => x1 ≤ x2) c.uncontracted)).Nodup := by
exact List.Nodup.filter _ (Finset.sort_nodup (fun x1 x2 => x1 ≤ x2) c.uncontracted)
have hsort : (List.filter (fun x => decide (x.1 < i.1))
(Finset.sort (fun x1 x2 => x1 ≤ x2) c.uncontracted)).Sorted (· ≤ ·) := by
exact List.Sorted.filter _ (Finset.sort_sorted (fun x1 x2 => x1 ≤ x2) c.uncontracted)
rw [← (List.toFinset_sort (· ≤ ·) hdup).mpr hsort]
congr
ext a
simp
rw [h1]
simp only [Nat.succ_eq_add_one]
have h2 : (Finset.filter (fun x => x.1 < i.1) c.uncontracted) =
(Finset.filter (fun x => i.succAbove x < i) c.uncontracted) := by
ext a
simp only [Nat.succ_eq_add_one, Finset.mem_filter, and_congr_right_iff]
intro ha
simp only [Fin.succAbove]
split
· apply Iff.intro
· intro h
omega
· intro h
rename_i h
rw [Fin.lt_def] at h
simp only [Fin.coe_castSucc] at h
omega
· apply Iff.intro
· intro h
rename_i h'
rw [Fin.lt_def]
simp only [Fin.val_succ]
rw [Fin.lt_def] at h'
simp only [Fin.coe_castSucc, not_lt] at h'
omega
· intro h
rename_i h
rw [Fin.lt_def] at h
simp only [Fin.val_succ] at h
omega
rw [h2]
simp only [exchangeSign_mul_self]
congr
simp only [Nat.succ_eq_add_one]
rw [insertList_uncontractedList_none_map]
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
We have (roughly) `N(c.insertList φ i k).uncontractedList`
is equal to `N((c.uncontractedList).eraseIdx k')`
where `k'` is the position in `c.uncontractedList` corresponding to `k`.
-/
lemma insertList_some_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted) :
𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i (some k)).uncontractedList))
= 𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k))) := by
simp only [Nat.succ_eq_add_one, insertList, optionEraseZ, uncontractedStatesEquiv,
Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
Fin.coe_cast]
congr
rw [congr_uncontractedList]
erw [uncontractedList_extractEquiv_symm_some]
simp only [Fin.coe_succAboveEmb, List.map_eraseIdx, List.map_map]
congr
conv_rhs => rw [get_eq_insertIdx_succAbove φ φs i]
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
This lemma states that `(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
for `c` equal to `c.insertList φ i none` is equal to that for just `c`
mulitiplied by the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma sign_timeContract_normalOrder_insertList_none (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) :
(c.insertList φ i none).sign • (c.insertList φ i none).timeContract 𝓞
* 𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i none).uncontractedList)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩)
• (c.sign • c.timeContract 𝓞 *
𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by
by_cases hg : GradingCompliant φs c
· rw [insertList_none_normalOrder, sign_insert_none]
simp only [Nat.succ_eq_add_one, timeContract_insertList_none, instCommGroup.eq_1,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
congr 1
rw [← mul_assoc]
congr 1
rw [signInsertNone_eq_filterset _ _ _ _ hg, ← map_mul]
congr
rw [ofFinset_union]
congr
ext a
simp only [Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter, Finset.mem_univ, true_and,
Finset.mem_inter, not_and, not_lt, and_imp]
apply Iff.intro
· intro ha
have ha1 := ha.1
rcases ha1 with ha1 | ha1
· exact ha1.2
· exact ha1.2
· intro ha
simp only [uncontracted, Finset.mem_filter, Finset.mem_univ, true_and, ha, and_true,
forall_const]
have hx : c.getDual? a = none ↔ ¬ (c.getDual? a).isSome := by
simp
rw [hx]
simp only [Bool.not_eq_true, Bool.eq_false_or_eq_true_self, true_and]
intro h1 h2
simp_all
· simp only [Nat.succ_eq_add_one, timeContract_insertList_none, Algebra.smul_mul_assoc,
instCommGroup.eq_1]
rw [timeContract_of_not_gradingCompliant]
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero]
exact hg
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
This lemma states that
`(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
for `c` equal to `c.insertList φ i (some k)` is equal to that for just `c`
mulitiplied by the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma sign_timeContract_normalOrder_insertList_some (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted)
(hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) :
(c.insertList φ i (some k)).sign • (c.insertList φ i (some k)).timeContract 𝓞
* 𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i (some k)).uncontractedList)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩)
• (c.sign • (𝓞.contractStateAtIndex φ (List.map φs.get c.uncontractedList)
((uncontractedStatesEquiv φs c) (some k)) * c.timeContract 𝓞)
* 𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k)))) := by
by_cases hg : GradingCompliant φs c ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1])
· by_cases hk : i.succAbove k < i
· rw [WickContraction.timeConract_insertList_some_eq_mul_contractStateAtIndex_not_lt]
swap
· exact hn _ hk
rw [insertList_some_normalOrder, sign_insert_some]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
rw [mul_assoc, mul_comm (sign φs c), ← mul_assoc]
congr 1
exact signInsertSome_mul_filter_contracted_of_lt φ φs c i k hk hg
· omega
· have hik : i.succAbove ↑k ≠ i := Fin.succAbove_ne i ↑k
rw [WickContraction.timeConract_insertList_some_eq_mul_contractStateAtIndex_lt]
swap
· exact hlt _
rw [insertList_some_normalOrder]
rw [sign_insert_some]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
rw [mul_assoc, mul_comm (sign φs c), ← mul_assoc]
congr 1
exact signInsertSome_mul_filter_contracted_of_not_lt φ φs c i k hk hg
· omega
· rw [timeConract_insertList_some]
simp only [Fin.getElem_fin, not_and] at hg
by_cases hg' : GradingCompliant φs c
· have hg := hg hg'
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, Algebra.smul_mul_assoc,
instCommGroup.eq_1, contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem]
by_cases h1 : i < i.succAbove ↑k
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [crAnF_superCommute_anPart_ofState_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact hg
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [crAnF_superCommute_anPart_ofState_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact fun a => hg (id (Eq.symm a))
· rw [timeContract_of_not_gradingCompliant]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, mul_zero, ZeroMemClass.coe_zero, smul_zero,
zero_mul, instCommGroup.eq_1]
exact hg'
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
This lemma states that
`(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
is equal to the sum of
`(c'.sign • c'.timeContract 𝓞) * N(c'.uncontracted)`
for all `c' = (c.insertList φ i k)` for `k : Option (c.uncontracted)`, multiplied by
the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma mul_sum_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ)
(c : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) :
(c.sign • c.timeContract 𝓞) * 𝓞.crAnF ((CrAnAlgebra.ofState φ) *
𝓝(ofStateList (c.uncontractedList.map φs.get))) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) •
∑ (k : Option (c.uncontracted)),
((c.insertList φ i k).sign • (c.insertList φ i k).timeContract 𝓞
* 𝓞.crAnF (𝓝(ofStateList
((c.insertList φ i k).uncontractedList.map (φs.insertIdx i φ).get)))) := by
rw [crAnF_ofState_mul_normalOrder_ofStatesList_eq_sum, Finset.mul_sum,
uncontractedStatesEquiv_list_sum, Finset.smul_sum]
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one]
congr 1
funext n
match n with
| none =>
rw [sign_timeContract_normalOrder_insertList_none]
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, instCommGroup.eq_1,
smul_smul]
congr 1
rw [← mul_assoc, exchangeSign_mul_self]
simp
| some n =>
rw [sign_timeContract_normalOrder_insertList_some _ _ _ _ _
(fun k => hlt k) (fun k a => hn k a)]
simp only [uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some',
Function.comp_apply, finCongr_apply, Algebra.smul_mul_assoc, instCommGroup.eq_1, smul_smul]
congr 1
· rw [← mul_assoc, exchangeSign_mul_self]
rw [one_mul]
· rw [← mul_assoc]
congr 1
have ht := (WickContraction.timeContract 𝓞 c).prop
rw [@Subalgebra.mem_center_iff] at ht
rw [ht]
lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') :
∑ (c : WickContraction φs.length), (c.sign • c.timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs.get))
= ∑ (c : WickContraction φs'.length), (c.sign • c.timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs'.get)) := by
subst h
simp
/-!
## Wick's theorem
-/
/-- Wick's theorem for the empty list. -/
lemma wicks_theorem_nil :
𝓞.crAnF (ofStateAlgebra (timeOrder (ofList []))) = ∑ (c : WickContraction [].length),
(c.sign [] • c.timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map [].get)) := by
rw [timeOrder_ofList_nil]
simp only [map_one, List.length_nil, Algebra.smul_mul_assoc]
rw [sum_WickContraction_nil, nil_zero_uncontractedList]
simp only [List.map_nil]
have h1 : ofStateList (𝓕 := 𝓕) [] = CrAnAlgebra.ofCrAnList [] := by simp
rw [h1, normalOrder_ofCrAnList]
simp [WickContraction.timeContract, empty, sign]
remark wicks_theorem_context := "
Wick's theorem is one of the most important results in perturbative quantum field theory.
It expresses a time-ordered product of fields as a sum of terms consisting of
time-contractions of pairs of fields multiplied by the normal-ordered product of
the remaining fields. Wick's theorem is also the precursor to the diagrammatic
approach to quantum field theory called Feynman diagrams."
/-- Wick's theorem for time-ordered products of bosonic and fermionic fields.
The time ordered product `T(φ₀φ₁…φₙ)` is equal to the sum of terms,
for all possible Wick contractions `c` of the list of fields `φs := φ₀φ₁…φₙ`, given by
the multiple of:
- The sign corresponding to the number of fermionic-fermionic exchanges one must do
to put elements in contracted pairs of `c` next to each other.
- The product of time-contractions of the contracted pairs of `c`.
- The normal-ordering of the uncontracted fields in `c`.
-/
theorem wicks_theorem : (φs : List 𝓕.States) → 𝓞.crAnF (ofStateAlgebra (timeOrder (ofList φs))) =
∑ (c : WickContraction φs.length), (c.sign φs • c.timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs.get))
| [] => wicks_theorem_nil
| φ :: φs => by
have ih := wicks_theorem (eraseMaxTimeField φ φs)
rw [timeOrder_eq_maxTimeField_mul_finset, map_mul, map_mul, ih, Finset.mul_sum]
have h1 : φ :: φs =
(eraseMaxTimeField φ φs).insertIdx (maxTimeFieldPosFin φ φs) (maxTimeField φ φs) := by
simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one,
maxTimeField, insertionSortMin, List.get_eq_getElem]
erw [insertIdx_eraseIdx_fin]
rw [wicks_theorem_congr h1]
conv_rhs => rw [insertLift_sum]
congr
funext c
have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center 𝓞.A)
(WickContraction.timeContract 𝓞 c).2 (sign (eraseMaxTimeField φ φs) c))
rw [map_smul, map_smul, Algebra.smul_mul_assoc, ← mul_assoc, ht, mul_assoc, ← map_mul]
rw [ofStateAlgebra_ofState, mul_sum_contractions (𝓞 := 𝓞)
(maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c]
trans (1 : ) • ∑ k : Option { x // x ∈ c.uncontracted }, sign
(List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs))
(insertList (maxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k) •
↑((c.insertList (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
(maxTimeField φ φs) (eraseMaxTimeField φ φs)).get
(insertList (maxTimeField φ φs) c
(maxTimeFieldPosFin φ φs) k).uncontractedList))
swap
· simp
rw [smul_smul]
simp only [instCommGroup.eq_1, exchangeSign_mul_self, Nat.succ_eq_add_one,
Algebra.smul_mul_assoc, Fintype.sum_option, timeContract_insertList_none,
Finset.univ_eq_attach, smul_add, one_smul]
· exact fun k => timeOrder_maxTimeField _ _ k
· exact fun k => lt_maxTimeFieldPosFin_not_timeOrder _ _ k
termination_by φs => φs.length
end FieldSpecification