99 lines
2.7 KiB
Text
99 lines
2.7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
|
||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||
import Mathlib.LinearAlgebra.Matrix.DotProduct
|
||
/-!
|
||
# Space time
|
||
|
||
This file introduce 4d Minkowski spacetime.
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
/-- The space-time -/
|
||
def SpaceTime : Type := Fin 4 → ℝ
|
||
|
||
/-- Give spacetime the structure of an additive commutative monoid. -/
|
||
instance : AddCommMonoid SpaceTime := Pi.addCommMonoid
|
||
|
||
/-- Give spacetime the structure of a module over the reals. -/
|
||
instance : Module ℝ SpaceTime := Pi.module _ _ _
|
||
|
||
instance euclideanNormedAddCommGroup : NormedAddCommGroup SpaceTime := Pi.normedAddCommGroup
|
||
|
||
instance euclideanNormedSpace : NormedSpace ℝ SpaceTime := Pi.normedSpace
|
||
|
||
|
||
namespace SpaceTime
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
/-- The space part of spacetime. -/
|
||
@[simp]
|
||
def space (x : SpaceTime) : EuclideanSpace ℝ (Fin 3) := ![x 1, x 2, x 3]
|
||
|
||
/-- The structure of a smooth manifold on spacetime. -/
|
||
def asSmoothManifold : ModelWithCorners ℝ SpaceTime SpaceTime := 𝓘(ℝ, SpaceTime)
|
||
|
||
instance : ChartedSpace SpaceTime SpaceTime := chartedSpaceSelf SpaceTime
|
||
|
||
/-- The standard basis for spacetime. -/
|
||
def stdBasis : Basis (Fin 4) ℝ SpaceTime := Pi.basisFun ℝ (Fin 4)
|
||
|
||
lemma stdBasis_apply (μ ν : Fin 4) : stdBasis μ ν = if μ = ν then 1 else 0 := by
|
||
erw [stdBasis, Pi.basisFun_apply, LinearMap.stdBasis_apply']
|
||
|
||
lemma stdBasis_not_eq {μ ν : Fin 4} (h : μ ≠ ν) : stdBasis μ ν = 0 := by
|
||
rw [stdBasis_apply]
|
||
exact if_neg h
|
||
|
||
lemma stdBasis_0 : stdBasis 0 = ![1, 0, 0, 0] := by
|
||
funext i
|
||
fin_cases i
|
||
<;> simp [stdBasis_apply]
|
||
|
||
lemma stdBasis_1 : stdBasis 1 = ![0, 1, 0, 0] := by
|
||
funext i
|
||
fin_cases i
|
||
<;> simp [stdBasis_apply]
|
||
|
||
lemma stdBasis_2 : stdBasis 2 = ![0, 0, 1, 0] := by
|
||
funext i
|
||
fin_cases i
|
||
<;> simp [stdBasis_apply]
|
||
|
||
lemma stdBasis_3 : stdBasis 3 = ![0, 0, 0, 1] := by
|
||
funext i
|
||
fin_cases i
|
||
<;> simp [stdBasis_apply]
|
||
|
||
lemma stdBasis_mulVec (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) :
|
||
(Λ *ᵥ stdBasis μ) ν = Λ ν μ := by
|
||
rw [mulVec, dotProduct, Fintype.sum_eq_single μ, stdBasis_apply]
|
||
simp only [↓reduceIte, mul_one]
|
||
intro x h
|
||
rw [stdBasis_apply, if_neg (Ne.symm h)]
|
||
exact CommMonoidWithZero.mul_zero (Λ ν x)
|
||
|
||
lemma explicit (x : SpaceTime) : x = ![x 0, x 1, x 2, x 3] := by
|
||
funext i
|
||
fin_cases i <;> rfl
|
||
|
||
@[simp]
|
||
lemma add_apply (x y : SpaceTime) (i : Fin 4) : (x + y) i = x i + y i := rfl
|
||
|
||
@[simp]
|
||
lemma smul_apply (x : SpaceTime) (a : ℝ) (i : Fin 4) : (a • x) i = a * x i := rfl
|
||
|
||
end SpaceTime
|
||
|
||
end
|