189 lines
7.2 KiB
Text
189 lines
7.2 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.OverColor.Basic
|
||
import HepLean.Tensors.Tree.Dot
|
||
import HepLean.SpaceTime.WeylFermion.Contraction
|
||
import HepLean.SpaceTime.WeylFermion.Metric
|
||
import HepLean.SpaceTime.WeylFermion.Unit
|
||
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
|
||
import HepLean.SpaceTime.LorentzVector.Complex.Metric
|
||
import HepLean.SpaceTime.LorentzVector.Complex.Unit
|
||
import HepLean.Mathematics.PiTensorProduct
|
||
import HepLean.SpaceTime.PauliMatrices.AsTensor
|
||
/-!
|
||
|
||
## Complex Lorentz tensors
|
||
|
||
-/
|
||
|
||
namespace Fermion
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
|
||
/-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/
|
||
inductive Color
|
||
| upL : Color
|
||
| downL : Color
|
||
| upR : Color
|
||
| downR : Color
|
||
| up : Color
|
||
| down : Color
|
||
|
||
instance : DecidableEq Color := fun x y =>
|
||
match x, y with
|
||
| Color.upL, Color.upL => isTrue rfl
|
||
| Color.downL, Color.downL => isTrue rfl
|
||
| Color.upR, Color.upR => isTrue rfl
|
||
| Color.downR, Color.downR => isTrue rfl
|
||
| Color.up, Color.up => isTrue rfl
|
||
| Color.down, Color.down => isTrue rfl
|
||
/- The false -/
|
||
| Color.upL, Color.downL => isFalse fun h => Color.noConfusion h
|
||
| Color.upL, Color.upR => isFalse fun h => Color.noConfusion h
|
||
| Color.upL, Color.downR => isFalse fun h => Color.noConfusion h
|
||
| Color.upL, Color.up => isFalse fun h => Color.noConfusion h
|
||
| Color.upL, Color.down => isFalse fun h => Color.noConfusion h
|
||
| Color.downL, Color.upL => isFalse fun h => Color.noConfusion h
|
||
| Color.downL, Color.upR => isFalse fun h => Color.noConfusion h
|
||
| Color.downL, Color.downR => isFalse fun h => Color.noConfusion h
|
||
| Color.downL, Color.up => isFalse fun h => Color.noConfusion h
|
||
| Color.downL, Color.down => isFalse fun h => Color.noConfusion h
|
||
| Color.upR, Color.upL => isFalse fun h => Color.noConfusion h
|
||
| Color.upR, Color.downL => isFalse fun h => Color.noConfusion h
|
||
| Color.upR, Color.downR => isFalse fun h => Color.noConfusion h
|
||
| Color.upR, Color.up => isFalse fun h => Color.noConfusion h
|
||
| Color.upR, Color.down => isFalse fun h => Color.noConfusion h
|
||
| Color.downR, Color.upL => isFalse fun h => Color.noConfusion h
|
||
| Color.downR, Color.downL => isFalse fun h => Color.noConfusion h
|
||
| Color.downR, Color.upR => isFalse fun h => Color.noConfusion h
|
||
| Color.downR, Color.up => isFalse fun h => Color.noConfusion h
|
||
| Color.downR, Color.down => isFalse fun h => Color.noConfusion h
|
||
| Color.up, Color.upL => isFalse fun h => Color.noConfusion h
|
||
| Color.up, Color.downL => isFalse fun h => Color.noConfusion h
|
||
| Color.up, Color.upR => isFalse fun h => Color.noConfusion h
|
||
| Color.up, Color.downR => isFalse fun h => Color.noConfusion h
|
||
| Color.up, Color.down => isFalse fun h => Color.noConfusion h
|
||
| Color.down, Color.upL => isFalse fun h => Color.noConfusion h
|
||
| Color.down, Color.downL => isFalse fun h => Color.noConfusion h
|
||
| Color.down, Color.upR => isFalse fun h => Color.noConfusion h
|
||
| Color.down, Color.downR => isFalse fun h => Color.noConfusion h
|
||
| Color.down, Color.up => isFalse fun h => Color.noConfusion h
|
||
|
||
noncomputable section
|
||
|
||
/-- The tensor structure for complex Lorentz tensors. -/
|
||
def complexLorentzTensor : TensorSpecies where
|
||
C := Fermion.Color
|
||
G := SL(2, ℂ)
|
||
G_group := inferInstance
|
||
k := ℂ
|
||
k_commRing := inferInstance
|
||
FDiscrete := Discrete.functor fun c =>
|
||
match c with
|
||
| Color.upL => Fermion.leftHanded
|
||
| Color.downL => Fermion.altLeftHanded
|
||
| Color.upR => Fermion.rightHanded
|
||
| Color.downR => Fermion.altRightHanded
|
||
| Color.up => Lorentz.complexContr
|
||
| Color.down => Lorentz.complexCo
|
||
τ := fun c =>
|
||
match c with
|
||
| Color.upL => Color.downL
|
||
| Color.downL => Color.upL
|
||
| Color.upR => Color.downR
|
||
| Color.downR => Color.upR
|
||
| Color.up => Color.down
|
||
| Color.down => Color.up
|
||
τ_involution c := by
|
||
match c with
|
||
| Color.upL => rfl
|
||
| Color.downL => rfl
|
||
| Color.upR => rfl
|
||
| Color.downR => rfl
|
||
| Color.up => rfl
|
||
| Color.down => rfl
|
||
contr := Discrete.natTrans fun c =>
|
||
match c with
|
||
| Discrete.mk Color.upL => Fermion.leftAltContraction
|
||
| Discrete.mk Color.downL => Fermion.altLeftContraction
|
||
| Discrete.mk Color.upR => Fermion.rightAltContraction
|
||
| Discrete.mk Color.downR => Fermion.altRightContraction
|
||
| Discrete.mk Color.up => Lorentz.contrCoContraction
|
||
| Discrete.mk Color.down => Lorentz.coContrContraction
|
||
metric := Discrete.natTrans fun c =>
|
||
match c with
|
||
| Discrete.mk Color.upL => Fermion.leftMetric
|
||
| Discrete.mk Color.downL => Fermion.altLeftMetric
|
||
| Discrete.mk Color.upR => Fermion.rightMetric
|
||
| Discrete.mk Color.downR => Fermion.altRightMetric
|
||
| Discrete.mk Color.up => Lorentz.contrMetric
|
||
| Discrete.mk Color.down => Lorentz.coMetric
|
||
unit := Discrete.natTrans fun c =>
|
||
match c with
|
||
| Discrete.mk Color.upL => Fermion.altLeftLeftUnit
|
||
| Discrete.mk Color.downL => Fermion.leftAltLeftUnit
|
||
| Discrete.mk Color.upR => Fermion.altRightRightUnit
|
||
| Discrete.mk Color.downR => Fermion.rightAltRightUnit
|
||
| Discrete.mk Color.up => Lorentz.coContrUnit
|
||
| Discrete.mk Color.down => Lorentz.contrCoUnit
|
||
repDim := fun c =>
|
||
match c with
|
||
| Color.upL => 2
|
||
| Color.downL => 2
|
||
| Color.upR => 2
|
||
| Color.downR => 2
|
||
| Color.up => 4
|
||
| Color.down => 4
|
||
repDim_neZero := fun c =>
|
||
match c with
|
||
| Color.upL => inferInstance
|
||
| Color.downL => inferInstance
|
||
| Color.upR => inferInstance
|
||
| Color.downR => inferInstance
|
||
| Color.up => inferInstance
|
||
| Color.down => inferInstance
|
||
basis := fun c =>
|
||
match c with
|
||
| Color.upL => Fermion.leftBasis
|
||
| Color.downL => Fermion.altLeftBasis
|
||
| Color.upR => Fermion.rightBasis
|
||
| Color.downR => Fermion.altRightBasis
|
||
| Color.up => Lorentz.complexContrBasisFin4
|
||
| Color.down => Lorentz.complexCoBasisFin4
|
||
contr_tmul_symm := fun c =>
|
||
match c with
|
||
| Color.upL => Fermion.leftAltContraction_tmul_symm
|
||
| Color.downL => Fermion.altLeftContraction_tmul_symm
|
||
| Color.upR => Fermion.rightAltContraction_tmul_symm
|
||
| Color.downR => Fermion.altRightContraction_tmul_symm
|
||
| Color.up => Lorentz.contrCoContraction_tmul_symm
|
||
| Color.down => Lorentz.coContrContraction_tmul_symm
|
||
|
||
instance : DecidableEq complexLorentzTensor.C := Fermion.instDecidableEqColor
|
||
|
||
lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.repDim c))
|
||
(j : Fin (complexLorentzTensor.repDim (complexLorentzTensor.τ c))) :
|
||
complexLorentzTensor.castToField
|
||
((complexLorentzTensor.contr.app {as := c}).hom
|
||
(complexLorentzTensor.basis c i ⊗ₜ complexLorentzTensor.basis (complexLorentzTensor.τ c) j)) =
|
||
if i.val = j.val then 1 else 0 :=
|
||
match c with
|
||
| Color.upL => Fermion.leftAltContraction_basis _ _
|
||
| Color.downL => Fermion.altLeftContraction_basis _ _
|
||
| Color.upR => Fermion.rightAltContraction_basis _ _
|
||
| Color.downR => Fermion.altRightContraction_basis _ _
|
||
| Color.up => Lorentz.contrCoContraction_basis _ _
|
||
| Color.down => Lorentz.coContrContraction_basis _ _
|
||
|
||
|
||
end
|
||
end Fermion
|