334 lines
13 KiB
Text
334 lines
13 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Mathematics.PiTensorProduct
|
||
import Mathlib.RepresentationTheory.Rep
|
||
import HepLean.Tensors.Basic
|
||
import Mathlib.Logic.Equiv.TransferInstance
|
||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||
import HepLean.SpaceTime.PauliMatrices.Basic
|
||
import LLMLean
|
||
/-!
|
||
|
||
## Interaction of Pauli matrices with self-adjoint matrices
|
||
|
||
-/
|
||
namespace PauliMatrix
|
||
open Matrix
|
||
|
||
lemma selfAdjoint_trace_σ0_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ0 * A.1)).re = Matrix.trace (σ0 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA
|
||
rw [eta_fin_two (A.1)ᴴ] at hA
|
||
simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def, of_apply, cons_val', cons_val_zero,
|
||
empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const] at hA
|
||
have h00 := congrArg (fun f => f 0 0) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one] at h00
|
||
have hA00 : A.1 0 0 = (A.1 0 0).re := by
|
||
exact Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00)
|
||
rw [hA00]
|
||
simp
|
||
have h11 := congrArg (fun f => f 1 1) hA
|
||
simp only [Fin.isValue, of_apply, cons_val', cons_val_one, head_cons, empty_val',
|
||
cons_val_fin_one, head_fin_const] at h11
|
||
exact Complex.conj_eq_iff_re.mp h11
|
||
|
||
lemma selfAdjoint_trace_σ1_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ1 * A.1)).re = Matrix.trace (σ1 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ1, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA
|
||
rw [eta_fin_two (A.1)ᴴ] at hA
|
||
simp at hA
|
||
have h01 := congrArg (fun f => f 0 1) hA
|
||
have h10 := congrArg (fun f => f 1 0) hA
|
||
simp at h01 h10
|
||
rw [← h01]
|
||
simp
|
||
rw [Complex.add_conj]
|
||
simp
|
||
ring
|
||
|
||
lemma selfAdjoint_trace_σ2_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ2 * A.1)).re = Matrix.trace (σ2 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ2, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA
|
||
simp at hA
|
||
have h01 := congrArg (fun f => f 0 1) hA
|
||
have h10 := congrArg (fun f => f 1 0) hA
|
||
simp at h01 h10
|
||
rw [← h10]
|
||
simp
|
||
trans Complex.I * (A.1 0 1 - (starRingEnd ℂ) (A.1 0 1))
|
||
· rw [Complex.sub_conj ]
|
||
ring_nf
|
||
simp
|
||
· ring
|
||
|
||
lemma selfAdjoint_trace_σ3_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
(Matrix.trace (σ3 * A.1)).re = Matrix.trace (σ3 * A.1) := by
|
||
rw [eta_fin_two A.1]
|
||
simp only [σ3, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons,
|
||
one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add]
|
||
have hA : IsSelfAdjoint A.1 := A.2
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA
|
||
simp at hA
|
||
have h00 := congrArg (fun f => f 0 0) hA
|
||
have h11 := congrArg (fun f => f 1 1) hA
|
||
have hA00 : A.1 0 0 = (A.1 0 0).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00)
|
||
have hA11 : A.1 1 1 = (A.1 1 1).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h11)
|
||
simp
|
||
rw [hA00, hA11]
|
||
simp
|
||
|
||
|
||
open Complex
|
||
|
||
lemma selfAdjoint_ext_complex {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)}
|
||
(h0 : ((Matrix.trace (PauliMatrix.σ0 * A.1)) = (Matrix.trace (PauliMatrix.σ0 * B.1))))
|
||
(h1 : Matrix.trace (PauliMatrix.σ1 * A.1) = Matrix.trace (PauliMatrix.σ1 * B.1))
|
||
(h2 : Matrix.trace (PauliMatrix.σ2 * A.1) = Matrix.trace (PauliMatrix.σ2 * B.1))
|
||
(h3 : Matrix.trace (PauliMatrix.σ3 * A.1) = Matrix.trace (PauliMatrix.σ3 * B.1)) : A = B := by
|
||
ext i j
|
||
rw [eta_fin_two A.1, eta_fin_two B.1] at h0 h1 h2 h3
|
||
simp only [PauliMatrix.σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons,
|
||
head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul,
|
||
Equiv.symm_apply_apply, trace_fin_two_of] at h0
|
||
simp [PauliMatrix.σ1] at h1
|
||
simp [PauliMatrix.σ2] at h2
|
||
simp [PauliMatrix.σ3] at h3
|
||
match i, j with
|
||
| 0, 0 =>
|
||
linear_combination (norm := ring_nf) (h0 + h3) / 2
|
||
| 0, 1 =>
|
||
linear_combination (norm := ring_nf) (h1 - I * h2) / 2
|
||
simp
|
||
| 1, 0 =>
|
||
linear_combination (norm := ring_nf) (h1 + I * h2) / 2
|
||
simp
|
||
| 1, 1 =>
|
||
linear_combination (norm := ring_nf) (h0 - h3) / 2
|
||
|
||
lemma selfAdjoint_ext {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)}
|
||
(h0 : ((Matrix.trace (PauliMatrix.σ0 * A.1))).re = ((Matrix.trace (PauliMatrix.σ0 * B.1))).re)
|
||
(h1 : ((Matrix.trace (PauliMatrix.σ1 * A.1))).re = ((Matrix.trace (PauliMatrix.σ1 * B.1))).re)
|
||
(h2 : ((Matrix.trace (PauliMatrix.σ2 * A.1))).re = ((Matrix.trace (PauliMatrix.σ2 * B.1))).re)
|
||
(h3 : ((Matrix.trace (PauliMatrix.σ3 * A.1))).re = ((Matrix.trace (PauliMatrix.σ3 * B.1))).re) :
|
||
A = B := by
|
||
have h0' := congrArg ofReal h0
|
||
have h1' := congrArg ofReal h1
|
||
have h2' := congrArg ofReal h2
|
||
have h3' := congrArg ofReal h3
|
||
rw [ofReal_eq_coe, ofReal_eq_coe] at h0' h1' h2' h3'
|
||
rw [selfAdjoint_trace_σ0_real A, selfAdjoint_trace_σ0_real B] at h0'
|
||
rw [selfAdjoint_trace_σ1_real A, selfAdjoint_trace_σ1_real B] at h1'
|
||
rw [selfAdjoint_trace_σ2_real A, selfAdjoint_trace_σ2_real B] at h2'
|
||
rw [selfAdjoint_trace_σ3_real A, selfAdjoint_trace_σ3_real B] at h3'
|
||
exact selfAdjoint_ext_complex h0' h1' h2' h3'
|
||
|
||
noncomputable section
|
||
|
||
def σSA' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
match i with
|
||
| Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩
|
||
| Sum.inr 0 => ⟨σ1, σ1_selfAdjoint⟩
|
||
| Sum.inr 1 => ⟨σ2, σ2_selfAdjoint⟩
|
||
| Sum.inr 2 => ⟨σ3, σ3_selfAdjoint⟩
|
||
|
||
|
||
lemma σSA_linearly_independent : LinearIndependent ℝ σSA' := by
|
||
apply Fintype.linearIndependent_iff.mpr
|
||
intro g hg
|
||
simp at hg
|
||
rw [Fin.sum_univ_three] at hg
|
||
simp [σSA'] at hg
|
||
intro i
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg
|
||
| Sum.inr 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg
|
||
| Sum.inr 1 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg
|
||
| Sum.inr 2 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg
|
||
|
||
lemma σSA_span : ⊤ ≤ Submodule.span ℝ (Set.range σSA') := by
|
||
refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_
|
||
intro A
|
||
let c : Fin 1 ⊕ Fin 3 → ℝ := fun i =>
|
||
match i with
|
||
| Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re
|
||
| Sum.inr 0 => 1/2 * (Matrix.trace (σ1 * A.1)).re
|
||
| Sum.inr 1 => 1/2 * (Matrix.trace (σ2 * A.1)).re
|
||
| Sum.inr 2 => 1/2 * (Matrix.trace (σ3 * A.1)).re
|
||
use c
|
||
simp [Fin.sum_univ_three, c]
|
||
apply selfAdjoint_ext
|
||
· simp [mul_add, σSA']
|
||
ring
|
||
· simp [mul_add, σSA']
|
||
ring
|
||
· simp [mul_add, σSA']
|
||
ring
|
||
· simp [mul_add, σSA']
|
||
ring
|
||
|
||
def σSA : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :=
|
||
Basis.mk σSA_linearly_independent σSA_span
|
||
|
||
def σSAL' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
match i with
|
||
| Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩
|
||
| Sum.inr 0 => ⟨-σ1, by rw [neg_mem_iff]; exact σ1_selfAdjoint⟩
|
||
| Sum.inr 1 => ⟨-σ2, by rw [neg_mem_iff]; exact σ2_selfAdjoint⟩
|
||
| Sum.inr 2 => ⟨-σ3, by rw [neg_mem_iff]; exact σ3_selfAdjoint⟩
|
||
|
||
|
||
lemma σSAL_linearly_independent : LinearIndependent ℝ σSAL' := by
|
||
apply Fintype.linearIndependent_iff.mpr
|
||
intro g hg
|
||
simp at hg
|
||
rw [Fin.sum_univ_three] at hg
|
||
simp [σSAL'] at hg
|
||
intro i
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg
|
||
| Sum.inr 0 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg
|
||
| Sum.inr 1 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg
|
||
| Sum.inr 2 =>
|
||
simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg
|
||
|
||
lemma σSAL_span : ⊤ ≤ Submodule.span ℝ (Set.range σSAL') := by
|
||
refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_
|
||
intro A
|
||
let c : Fin 1 ⊕ Fin 3 → ℝ := fun i =>
|
||
match i with
|
||
| Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re
|
||
| Sum.inr 0 => - 1/2 * (Matrix.trace (σ1 * A.1)).re
|
||
| Sum.inr 1 => - 1/2 * (Matrix.trace (σ2 * A.1)).re
|
||
| Sum.inr 2 => - 1/2 * (Matrix.trace (σ3 * A.1)).re
|
||
use c
|
||
simp [Fin.sum_univ_three, c]
|
||
apply selfAdjoint_ext
|
||
· simp [mul_add, σSAL']
|
||
ring
|
||
· simp [mul_add, σSAL']
|
||
ring
|
||
· simp [mul_add, σSAL']
|
||
ring
|
||
· simp [mul_add, σSAL']
|
||
ring
|
||
|
||
def σSAL : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :=
|
||
Basis.mk σSAL_linearly_independent σSAL_span
|
||
|
||
lemma σSAL_decomp (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
M = (1/2 * (Matrix.trace (σ0 * M.1)).re) • σSAL (Sum.inl 0)
|
||
+ (-1/2 * (Matrix.trace (σ1 * M.1)).re) • σSAL (Sum.inr 0)
|
||
+ (-1/2 * (Matrix.trace (σ2 * M.1)).re) • σSAL (Sum.inr 1)
|
||
+ (-1/2 * (Matrix.trace (σ3 * M.1)).re) • σSAL (Sum.inr 2) := by
|
||
apply selfAdjoint_ext
|
||
· simp [σSAL, mul_add, σSAL']
|
||
ring
|
||
· simp [σSAL, mul_add, σSAL']
|
||
ring
|
||
· simp [σSAL, mul_add, σSAL']
|
||
ring
|
||
· simp [σSAL, mul_add, σSAL']
|
||
ring
|
||
|
||
@[simp]
|
||
lemma σSAL_repr_inl_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inl 0) = 1 / 2 * Matrix.trace (σ0 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp [Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => Matrix.trace (σ0 * A.1)/ 2) hM
|
||
simp [σSAL, σSAL', mul_add] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
@[simp]
|
||
lemma σSAL_repr_inr_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 0) = - 1 / 2 * Matrix.trace (σ1 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp [Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ1 * A.1)/ 2) hM
|
||
simp [σSAL, σSAL', mul_add] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
@[simp]
|
||
lemma σSAL_repr_inr_1 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 1) = - 1 / 2 * Matrix.trace (σ2 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp [Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ2 * A.1)/ 2) hM
|
||
simp [σSAL, σSAL', mul_add] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
@[simp]
|
||
lemma σSAL_repr_inr_2 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||
σSAL.repr M (Sum.inr 2) = - 1 / 2 * Matrix.trace (σ3 * M.1) := by
|
||
have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm
|
||
simp [Fin.sum_univ_three] at hM
|
||
have h0 := congrArg (fun A => - Matrix.trace (σ3 * A.1)/ 2) hM
|
||
simp [σSAL, σSAL', mul_add] at h0
|
||
linear_combination (norm := ring_nf) -h0
|
||
simp [σSAL]
|
||
|
||
lemma σSA_minkowskiMetric_σSAL (i : Fin 1 ⊕ Fin 3) :
|
||
(σSA i) = minkowskiMatrix i i • (σSAL i) := by
|
||
match i with
|
||
| Sum.inl 0 =>
|
||
simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inl_0_inl_0]
|
||
| Sum.inr 0 =>
|
||
simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| Sum.inr 1 =>
|
||
simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| Sum.inr 2 =>
|
||
simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i]
|
||
cases i with
|
||
| inl val =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
| inr val_1 =>
|
||
ext i j : 2
|
||
simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg]
|
||
|
||
|
||
end
|
||
end PauliMatrix
|