571 lines
23 KiB
Text
571 lines
23 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.WithUniqueDual
|
||
import Mathlib.Algebra.Order.Ring.Nat
|
||
import Mathlib.Data.Finset.Sort
|
||
/-!
|
||
|
||
# withDuals equal to withUniqueDuals
|
||
|
||
In a permissible list of indices every index which has a dual has a unique dual.
|
||
This corresponds to the condition that `l.withDual = l.withUniqueDual`.
|
||
|
||
We prove lemmas relating to this condition.
|
||
|
||
-/
|
||
|
||
namespace IndexNotation
|
||
|
||
namespace IndexList
|
||
|
||
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
|
||
variable (l l2 l3 : IndexList X)
|
||
|
||
/-!
|
||
|
||
## withDual equal to withUniqueDual
|
||
|
||
-/
|
||
|
||
lemma withUnqiueDual_eq_withDual_iff_unique_forall :
|
||
l.withUniqueDual = l.withDual ↔
|
||
∀ (i : l.withDual) j, l.AreDualInSelf i j → j = l.getDual? i := by
|
||
refine Iff.intro (fun h i j hj => ?_) (fun h => ?_)
|
||
· rw [@Finset.ext_iff] at h
|
||
simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
|
||
true_and, and_iff_left_iff_imp] at h
|
||
refine h i ?_ j hj
|
||
exact withDual_isSome l i
|
||
· refine Finset.ext (fun i => ?_)
|
||
refine Iff.intro (fun hi => mem_withDual_of_mem_withUniqueDual l i hi) (fun hi => ?_)
|
||
· simp only [withUniqueDual, mem_withDual_iff_isSome, Finset.mem_filter, Finset.mem_univ,
|
||
true_and]
|
||
exact And.intro ((mem_withDual_iff_isSome l i).mp hi) (fun j hj => h ⟨i, hi⟩ j hj)
|
||
|
||
lemma withUnqiueDual_eq_withDual_iff :
|
||
l.withUniqueDual = l.withDual ↔
|
||
∀ i, (l.getDual? i).bind l.getDual? = Option.guard (fun i => i ∈ l.withDual) i := by
|
||
apply Iff.intro
|
||
· intro h i
|
||
by_cases hi : i ∈ l.withDual
|
||
· have hii : i ∈ l.withUniqueDual := by
|
||
simp_all only
|
||
change (l.getDual? i).bind l.getDual? = _
|
||
simp [hii]
|
||
symm
|
||
rw [Option.guard_eq_some]
|
||
exact ⟨rfl, mem_withUniqueDual_isSome l i hii⟩
|
||
· simp at hi
|
||
simp [Option.guard, hi]
|
||
· intro h
|
||
rw [withUnqiueDual_eq_withDual_iff_unique_forall]
|
||
intro i j hj
|
||
rcases l.getDual?_of_areDualInSelf hj with hi | hi | hi
|
||
· have hj' := h j
|
||
rw [hi] at hj'
|
||
simp at hj'
|
||
rw [hj']
|
||
symm
|
||
rw [Option.guard_eq_some, hi]
|
||
exact ⟨rfl, rfl⟩
|
||
· exact hi.symm
|
||
· have hj' := h j
|
||
rw [hi] at hj'
|
||
rw [h i] at hj'
|
||
have hi : Option.guard (fun i => i ∈ l.withDual) ↑i = some i := by
|
||
apply Option.guard_eq_some.mpr
|
||
simp
|
||
rw [hi] at hj'
|
||
simp at hj'
|
||
have hj'' := Option.guard_eq_some.mp hj'.symm
|
||
have hj''' := hj''.1
|
||
rw [hj'''] at hj
|
||
simp at hj
|
||
|
||
lemma withUnqiueDual_eq_withDual_iff_list_apply :
|
||
l.withUniqueDual = l.withDual ↔
|
||
(Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
|
||
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) := by
|
||
rw [withUnqiueDual_eq_withDual_iff]
|
||
refine Iff.intro (fun h => List.map_eq_map_iff.mpr fun a _ => h a) (fun h i => ?_)
|
||
simp only [List.map_inj_left] at h
|
||
have h1 {n : ℕ} (m : Fin n) : m ∈ Fin.list n := by
|
||
have h1' : (Fin.list n)[m] = m := Fin.getElem_list _ _
|
||
exact h1' ▸ List.getElem_mem _ _ _
|
||
exact h i (h1 i)
|
||
|
||
/-- A boolean which is true for an index list `l` if for every index in `l` with a dual,
|
||
that dual is unique. -/
|
||
def withUnqiueDualEqWithDualBool : Bool :=
|
||
if (Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
|
||
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) then
|
||
true
|
||
else
|
||
false
|
||
|
||
lemma withUnqiueDual_eq_withDual_iff_list_apply_bool :
|
||
l.withUniqueDual = l.withDual ↔ l.withUnqiueDualEqWithDualBool := by
|
||
rw [withUnqiueDual_eq_withDual_iff_list_apply]
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· simp only [withUnqiueDualEqWithDualBool, h, mem_withDual_iff_isSome, ↓reduceIte]
|
||
· simpa only [mem_withDual_iff_isSome, List.map_inj_left, withUnqiueDualEqWithDualBool,
|
||
Bool.if_false_right, Bool.and_true, decide_eq_true_eq] using h
|
||
|
||
@[simp]
|
||
lemma withUnqiueDual_eq_withDual_of_empty (h : l.withDual = ∅) :
|
||
l.withUniqueDual = l.withDual := by
|
||
rw [h, Finset.eq_empty_iff_forall_not_mem]
|
||
intro x
|
||
by_contra hx
|
||
have x' : l.withDual := ⟨x, l.mem_withDual_of_withUniqueDual ⟨x, hx⟩⟩
|
||
have hx' := x'.2
|
||
simp [h] at hx'
|
||
|
||
lemma withUniqueDual_eq_withDual_iff_sort_eq :
|
||
l.withUniqueDual = l.withDual ↔
|
||
l.withUniqueDual.sort (fun i j => i ≤ j) = l.withDual.sort (fun i j => i ≤ j) := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· rw [h]
|
||
· have h1 := congrArg Multiset.ofList h
|
||
rw [Finset.sort_eq, Finset.sort_eq] at h1
|
||
exact Eq.symm ((fun {α} {s t} => Finset.val_inj.mp) (id (Eq.symm h1)))
|
||
|
||
/-!
|
||
|
||
# withUniqueDual equal to withDual and count conditions.
|
||
|
||
-/
|
||
|
||
lemma withUniqueDual_eq_withDual_iff_countId_leq_two :
|
||
l.withUniqueDual = l.withDual ↔ ∀ i, l.countId (l.val.get i) ≤ 2 := by
|
||
refine Iff.intro (fun h i => ?_) (fun h => ?_)
|
||
· by_cases hi : i ∈ l.withDual
|
||
· rw [← h] at hi
|
||
rw [mem_withUniqueDual_iff_countId_eq_two] at hi
|
||
rw [hi]
|
||
· rw [mem_withDual_iff_countId_gt_one] at hi
|
||
simp at hi
|
||
exact Nat.le_succ_of_le hi
|
||
· refine Finset.ext (fun i => ?_)
|
||
rw [mem_withUniqueDual_iff_countId_eq_two, mem_withDual_iff_countId_gt_one]
|
||
have hi := h i
|
||
omega
|
||
|
||
lemma withUniqueDual_eq_withDual_countId_cases (h : l.withUniqueDual = l.withDual)
|
||
(i : Fin l.length) : l.countId (l.val.get i) = 0 ∨
|
||
l.countId (l.val.get i) = 1 ∨ l.countId (l.val.get i) = 2 := by
|
||
by_cases h0 : l.countId (l.val.get i)= 0
|
||
· exact Or.inl h0
|
||
· by_cases h1 : l.countId (l.val.get i) = 1
|
||
· exact Or.inr (Or.inl h1)
|
||
· have h2 : l.countId (l.val.get i) ≤ 2 := by
|
||
rw [withUniqueDual_eq_withDual_iff_countId_leq_two] at h
|
||
exact h i
|
||
omega
|
||
|
||
section filterID
|
||
|
||
lemma filter_id_of_countId_eq_zero {i : Fin l.length} (h1 : l.countId (l.val.get i) = 0) :
|
||
l.val.filter (fun J => (l.val.get i).id = J.id) = [] := by
|
||
rw [countId_eq_length_filter, List.length_eq_zero] at h1
|
||
exact h1
|
||
|
||
lemma filter_id_of_countId_eq_zero' {I : Index X} (h1 : l.countId I = 0) :
|
||
l.val.filter (fun J => I.id = J.id) = [] := by
|
||
rw [countId_eq_length_filter, List.length_eq_zero] at h1
|
||
exact h1
|
||
|
||
lemma filter_id_of_countId_eq_one {i : Fin l.length} (h1 : l.countId (l.val.get i) = 1) :
|
||
l.val.filter (fun J => (l.val.get i).id = J.id) = [l.val.get i] := by
|
||
rw [countId_eq_length_filter, List.length_eq_one] at h1
|
||
obtain ⟨J, hJ⟩ := h1
|
||
have hme : (l.val.get i) ∈ List.filter (fun J => decide ((l.val.get i).id = J.id)) l.val := by
|
||
simp only [List.get_eq_getElem, List.mem_filter, decide_True, and_true]
|
||
exact List.getElem_mem l.val (↑i) i.isLt
|
||
rw [hJ] at hme
|
||
simp only [List.get_eq_getElem, List.mem_singleton] at hme
|
||
erw [hJ]
|
||
simp only [List.get_eq_getElem, List.cons.injEq, and_true]
|
||
exact id (Eq.symm hme)
|
||
|
||
lemma filter_id_of_countId_eq_two {i : Fin l.length}
|
||
(h : l.countId (l.val.get i) = 2) :
|
||
l.val.filter (fun J => (l.val.get i).id = J.id) =
|
||
[l.val.get i, l.val.get ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))] ∨
|
||
l.val.filter (fun J => (l.val.get i).id = J.id) =
|
||
[l.val.get ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h)), l.val.get i] := by
|
||
have hc := l.countId_eq_two_of_mem_withUniqueDual i
|
||
((mem_withUniqueDual_iff_countId_eq_two l i).mpr h)
|
||
rw [countId_eq_length_filter] at hc
|
||
by_cases hi : i < ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))
|
||
· apply Or.inl
|
||
symm
|
||
apply List.Sublist.eq_of_length
|
||
· have h1 : [l.val.get i, l.val.get
|
||
((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))].filter
|
||
(fun J => (l.val.get i).id = J.id) = [l.val.get i, l.val.get
|
||
((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))] := by
|
||
simp only [List.get_eq_getElem, decide_True, List.filter_cons_of_pos, List.cons.injEq,
|
||
List.filter_eq_self, List.mem_singleton, decide_eq_true_eq, forall_eq, true_and]
|
||
change l.idMap i = l.idMap ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))
|
||
simp
|
||
rw [← h1]
|
||
refine List.Sublist.filter (fun (J : Index X) => ((l.val.get i).id = J.id)) ?_
|
||
rw [List.sublist_iff_exists_fin_orderEmbedding_get_eq]
|
||
refine ⟨⟨⟨![i, (l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h)], ?_⟩, ?_⟩, ?_⟩
|
||
· refine List.nodup_ofFn.mp ?_
|
||
simpa using Fin.ne_of_lt hi
|
||
· intro a b
|
||
fin_cases a, b
|
||
<;> simp [hi]
|
||
exact Fin.le_of_lt hi
|
||
· intro a
|
||
fin_cases a <;> rfl
|
||
· rw [hc]
|
||
simp
|
||
· have hi' : ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h)) < i := by
|
||
have h1 := l.getDual?_get_areDualInSelf i (getDual?_isSome_of_countId_eq_two l h)
|
||
simp only [AreDualInSelf] at h1
|
||
have h2 := h1.1
|
||
omega
|
||
apply Or.inr
|
||
symm
|
||
apply List.Sublist.eq_of_length
|
||
· have h1 : [l.val.get ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h)),
|
||
l.val.get i].filter (fun J => (l.val.get i).id = J.id) = [l.val.get
|
||
((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h)), l.val.get i,] := by
|
||
simp only [List.get_eq_getElem, List.filter_eq_self, List.mem_cons, List.mem_singleton,
|
||
decide_eq_true_eq, forall_eq_or_imp, forall_eq, and_true]
|
||
apply And.intro
|
||
· change l.idMap i = l.idMap ((l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h))
|
||
simp
|
||
· simp only [List.not_mem_nil, false_implies, implies_true, and_self]
|
||
rw [← h1]
|
||
refine List.Sublist.filter (fun (J : Index X) => ((l.val.get i).id = J.id)) ?_
|
||
rw [List.sublist_iff_exists_fin_orderEmbedding_get_eq]
|
||
refine ⟨⟨⟨![(l.getDual? i).get (l.getDual?_isSome_of_countId_eq_two h), i], ?_⟩, ?_⟩, ?_⟩
|
||
· refine List.nodup_ofFn.mp ?_
|
||
simp only [List.get_eq_getElem, List.length_singleton, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||
List.length_nil, List.ofFn_succ, Fin.isValue, Matrix.cons_val_zero, Matrix.cons_val_succ,
|
||
Matrix.cons_val_fin_one, List.ofFn_zero, List.nodup_cons, List.mem_singleton,
|
||
List.not_mem_nil, not_false_eq_true, List.nodup_nil, and_self, and_true]
|
||
exact Fin.ne_of_lt hi'
|
||
· intro a b
|
||
fin_cases a, b
|
||
<;> simp [hi']
|
||
exact Fin.le_of_lt hi'
|
||
· intro a
|
||
fin_cases a <;> rfl
|
||
· rw [hc]
|
||
simp
|
||
|
||
/-- Given an index `I` such that there is one index in `l` with the same `id` as `I`.
|
||
This is that index. -/
|
||
def consDual {I : Index X} (hI : l.countId I = 1) : Index X :=
|
||
(l.cons I).val.get (((l.cons I).getDual? ⟨0, by simp⟩).get
|
||
((l.cons I).getDual?_isSome_of_countId_eq_two (by simpa [countId] using hI)))
|
||
|
||
/-! TODO: Relate `consDual` to `getDualInOther?`. -/
|
||
|
||
@[simp]
|
||
lemma consDual_id {I : Index X} (hI : l.countId I = 1) :
|
||
(l.consDual hI).id = I.id := by
|
||
change (l.cons I).idMap ((((l.cons I).getDual? ⟨0, by simp⟩).get
|
||
((l.cons I).getDual?_isSome_of_countId_eq_two (by simpa [countId] using hI)))) = _
|
||
simp only [cons, Fin.zero_eta, getDual?_get_id]
|
||
simp only [idMap, List.get_eq_getElem, List.length_cons, Fin.val_zero, List.getElem_cons_zero]
|
||
|
||
@[simp]
|
||
lemma consDual_mem {I : Index X} (hI : l.countId I = 1) :
|
||
l.consDual hI ∈ l.val := by
|
||
let Di := (((l.cons I).getDual? ⟨0, by simp⟩).get (by
|
||
rw [← zero_mem_withUniqueDual_of_cons_iff_countId_one] at hI; exact
|
||
mem_withUniqueDual_isSome (l.cons I) ⟨0, _⟩ hI))
|
||
have hDiz : Di ≠ ⟨0, by simp⟩ := by
|
||
have hd : (l.cons I).AreDualInSelf ⟨0, by simp⟩ Di := by
|
||
simp [Di]
|
||
symm
|
||
exact (l.cons I).getDual?_get_areDualInSelf ⟨0, by simp⟩ (by
|
||
rw [← zero_mem_withUniqueDual_of_cons_iff_countId_one] at hI;
|
||
exact mem_withUniqueDual_isSome (l.cons I) ⟨0, _⟩ hI)
|
||
simp [AreDualInSelf] at hd
|
||
have hd2 := hd.1
|
||
exact fun a => hd2 (id (Eq.symm a))
|
||
have Dim1 : (Di.1-1) + 1 = Di.1 := by
|
||
have : Di.1 ≠ 0 := by
|
||
rw [Fin.ne_iff_vne] at hDiz
|
||
exact hDiz
|
||
omega
|
||
change (l.cons I).val.get Di ∈ l.val
|
||
simp only [cons_val, List.get_eq_getElem, List.length_cons]
|
||
have h1 : (I :: l.val).get ⟨Di.1, Di.isLt⟩ = (I :: l.val).get
|
||
⟨(Di.1-1) + 1, by rw [Dim1]; exact Di.isLt⟩ := by
|
||
apply congrArg
|
||
rw [Fin.ext_iff]
|
||
exact id (Eq.symm Dim1)
|
||
simp only [List.length_cons, cons_length, Fin.eta, List.get_eq_getElem,
|
||
List.getElem_cons_succ] at h1
|
||
rw [h1]
|
||
exact List.getElem_mem l.val _ _
|
||
|
||
lemma consDual_filter {I : Index X} (hI : l.countId I = 1) :
|
||
l.val.filter (fun J => I.id = J.id) = [l.consDual hI] := by
|
||
have h1 : (l.val.filter (fun J => I.id = J.id)).length = 1 := by
|
||
rw [← List.countP_eq_length_filter]
|
||
exact hI
|
||
rw [List.length_eq_one] at h1
|
||
obtain ⟨a, ha⟩ := h1
|
||
rw [ha]
|
||
simp only [List.cons.injEq, and_true]
|
||
have haI : l.consDual hI ∈ l.val.filter (fun J => I.id = J.id) := by
|
||
simp
|
||
rw [ha] at haI
|
||
simp at haI
|
||
exact haI.symm
|
||
|
||
lemma consDual_iff {I : Index X} (hI : l.countId I = 1)
|
||
(I' : Index X) : I' = l.consDual hI ↔ I' ∈ l.val ∧ I'.id = I.id := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· subst h
|
||
simp only [consDual_mem, consDual_id, and_self]
|
||
· have hI' : I' ∈ l.val.filter (fun J => I.id = J.id) := by
|
||
simp only [List.mem_filter, h, decide_True, and_self]
|
||
rw [l.consDual_filter hI] at hI'
|
||
simpa using hI'
|
||
|
||
lemma filter_of_constDual {I : Index X} (hI : l.countId I = 1) :
|
||
(l.cons I).val.filter (fun J => (l.consDual hI).id = J.id) = [I, l.consDual hI] := by
|
||
simp only [consDual_id, cons_val, decide_True, List.filter_cons_of_pos, List.cons.injEq, true_and]
|
||
exact consDual_filter l hI
|
||
|
||
end filterID
|
||
|
||
lemma withUniqueDual_eq_withDual_iff_countId_mem_le_two :
|
||
l.withUniqueDual = l.withDual ↔
|
||
∀ I (_ : I ∈ l.val), l.countId I ≤ 2 := by
|
||
rw [withUniqueDual_eq_withDual_iff_countId_leq_two]
|
||
refine Iff.intro (fun h I hI => ?_) (fun h i => ?_)
|
||
· let i := l.val.indexOf I
|
||
have hi : i < l.length := List.indexOf_lt_length.mpr hI
|
||
have hIi : I = l.val.get ⟨i, hi⟩ := (List.indexOf_get hi).symm
|
||
rw [hIi]
|
||
exact h ⟨i, hi⟩
|
||
· exact h (l.val.get i) (List.getElem_mem l.val (↑i) i.isLt)
|
||
|
||
lemma withUniqueDual_eq_withDual_iff_all_countId_le_two :
|
||
l.withUniqueDual = l.withDual ↔
|
||
l.val.all (fun I => l.countId I ≤ 2) := by
|
||
rw [withUniqueDual_eq_withDual_iff_countId_mem_le_two]
|
||
simp only [List.all_eq_true, decide_eq_true_eq]
|
||
|
||
/-!
|
||
|
||
## Relationship with cons
|
||
|
||
-/
|
||
|
||
lemma withUniqueDual_eq_withDual_cons_iff (I : Index X) (hl : l.withUniqueDual = l.withDual) :
|
||
(l.cons I).withUniqueDual = (l.cons I).withDual ↔ l.countId I ≤ 1 := by
|
||
rw [withUniqueDual_eq_withDual_iff_all_countId_le_two]
|
||
simp only [cons_val, countId, List.all_cons, decide_True, List.countP_cons_of_pos,
|
||
Nat.reduceLeDiff, Bool.and_eq_true, decide_eq_true_eq, List.all_eq_true, and_iff_left_iff_imp]
|
||
intro h I' hI'
|
||
by_cases hII' : I'.id = I.id
|
||
· rw [List.countP_cons_of_pos]
|
||
· rw [hII']
|
||
omega
|
||
· simpa using hII'
|
||
· rw [List.countP_cons_of_neg]
|
||
· rw [withUniqueDual_eq_withDual_iff_countId_mem_le_two] at hl
|
||
exact hl I' hI'
|
||
· simpa using hII'
|
||
|
||
lemma withUniqueDual_eq_withDual_of_cons {I : Index X}
|
||
(hl : (l.cons I).withUniqueDual = (l.cons I).withDual) :
|
||
l.withUniqueDual = l.withDual := by
|
||
rw [withUniqueDual_eq_withDual_iff_countId_mem_le_two] at hl ⊢
|
||
intro I' hI'
|
||
have hImem : I' ∈ (l.cons I).val := by
|
||
simp [hI']
|
||
have h1 : List.countP (fun J => decide (I'.id = J.id)) l.val ≤
|
||
List.countP (fun J => decide (I'.id = J.id)) (I :: l.val) := by
|
||
by_cases hII' : I'.id = I.id
|
||
· rw [List.countP_cons_of_pos _ l.val]
|
||
· simp
|
||
· simpa using hII'
|
||
· rw [List.countP_cons_of_neg _ l.val]
|
||
simpa using hII'
|
||
exact Nat.le_trans h1 (hl I' hImem)
|
||
|
||
lemma withUniqueDual_eq_withDual_cons_iff' (I : Index X) :
|
||
(l.cons I).withUniqueDual = (l.cons I).withDual ↔
|
||
l.withUniqueDual = l.withDual ∧ l.countId I ≤ 1 := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· have h1 : l.withUniqueDual = l.withDual := by
|
||
exact withUniqueDual_eq_withDual_of_cons l h
|
||
apply And.intro h1 ((withUniqueDual_eq_withDual_cons_iff l I h1).mp h)
|
||
· rw [withUniqueDual_eq_withDual_cons_iff]
|
||
· exact h.2
|
||
· exact h.1
|
||
|
||
/-!
|
||
|
||
## withUniqueDualInOther equal to withDualInOther append conditions
|
||
|
||
-/
|
||
|
||
lemma withUniqueDualInOther_eq_withDualInOther_append_of_symm'
|
||
(h : (l ++ l2).withUniqueDualInOther l3 = (l ++ l2).withDualInOther l3) :
|
||
(l2 ++ l).withUniqueDualInOther l3 = (l2 ++ l).withDualInOther l3 := by
|
||
rw [Finset.ext_iff] at h ⊢
|
||
intro j
|
||
obtain ⟨k, hk⟩ := appendEquiv.surjective j
|
||
subst hk
|
||
match k with
|
||
| Sum.inl k =>
|
||
rw [mem_append_withUniqueDualInOther_symm]
|
||
simpa only [mem_withInDualOther_iff_isSome, getDualInOther?_append_of_inl,
|
||
getDualInOther?_append_of_inr] using h (appendEquiv (Sum.inr k))
|
||
| Sum.inr k =>
|
||
rw [← mem_append_withUniqueDualInOther_symm]
|
||
simpa only [mem_withInDualOther_iff_isSome, getDualInOther?_append_of_inr,
|
||
getDualInOther?_append_of_inl] using h (appendEquiv (Sum.inl k))
|
||
|
||
lemma withUniqueDualInOther_eq_withDualInOther_append_of_symm :
|
||
(l ++ l2).withUniqueDualInOther l3 = (l ++ l2).withDualInOther l3 ↔
|
||
(l2 ++ l).withUniqueDualInOther l3 = (l2 ++ l).withDualInOther l3 :=
|
||
Iff.intro
|
||
(l.withUniqueDualInOther_eq_withDualInOther_append_of_symm' l2 l3)
|
||
(l2.withUniqueDualInOther_eq_withDualInOther_append_of_symm' l l3)
|
||
|
||
lemma withUniqueDualInOther_eq_withDualInOther_of_append_symm'
|
||
(h : l.withUniqueDualInOther (l2 ++ l3) = l.withDualInOther (l2 ++ l3)) :
|
||
l.withUniqueDualInOther (l3 ++ l2) = l.withDualInOther (l3 ++ l2) := by
|
||
rw [Finset.ext_iff] at h ⊢
|
||
intro j
|
||
rw [mem_withUniqueDualInOther_symm]
|
||
rw [h j]
|
||
simp only [mem_withInDualOther_iff_isSome, getDualInOther?_isSome_of_append_iff]
|
||
exact Or.comm
|
||
|
||
lemma withUniqueDualInOther_eq_withDualInOther_of_append_symm :
|
||
l.withUniqueDualInOther (l2 ++ l3) = l.withDualInOther (l2 ++ l3) ↔
|
||
l.withUniqueDualInOther (l3 ++ l2) = l.withDualInOther (l3 ++ l2) :=
|
||
Iff.intro
|
||
(l.withUniqueDualInOther_eq_withDualInOther_of_append_symm' l2 l3)
|
||
(l.withUniqueDualInOther_eq_withDualInOther_of_append_symm' l3 l2)
|
||
|
||
/-!
|
||
|
||
## withDual equal to withUniqueDual append conditions
|
||
|
||
-/
|
||
|
||
lemma append_withDual_eq_withUniqueDual_iff :
|
||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||
((l.withUniqueDual ∩ (l.withDualInOther l2)ᶜ) ∪ l.withUniqueDualInOther l2)
|
||
= l.withDual ∪ l.withDualInOther l2
|
||
∧ (l2.withUniqueDual ∩ (l2.withDualInOther l)ᶜ) ∪ l2.withUniqueDualInOther l
|
||
= l2.withDual ∪ l2.withDualInOther l := by
|
||
rw [append_withUniqueDual_disjSum, withDual_append_eq_disjSum]
|
||
simp only [Equiv.finsetCongr_apply, Finset.map_inj]
|
||
have h (s s' : Finset (Fin l.length)) (t t' : Finset (Fin l2.length)) :
|
||
s.disjSum t = s'.disjSum t' ↔ s = s' ∧ t = t' := by
|
||
simp [Finset.ext_iff]
|
||
exact h _ _ _ _
|
||
|
||
lemma append_withDual_eq_withUniqueDual_symm :
|
||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||
(l2 ++ l).withUniqueDual = (l2 ++ l).withDual := by
|
||
rw [append_withDual_eq_withUniqueDual_iff, append_withDual_eq_withUniqueDual_iff]
|
||
exact And.comm
|
||
|
||
@[simp]
|
||
lemma append_withDual_eq_withUniqueDual_inl (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||
l.withUniqueDual = l.withDual := by
|
||
rw [Finset.ext_iff]
|
||
intro i
|
||
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
|
||
· exact mem_withDual_of_mem_withUniqueDual l i h'
|
||
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
|
||
rw [h]
|
||
simp_all
|
||
refine l.mem_withUniqueDual_of_inl l2 i hn ?_
|
||
exact (mem_withDual_iff_isSome l i).mp h'
|
||
|
||
@[simp]
|
||
lemma append_withDual_eq_withUniqueDual_inr (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||
l2.withUniqueDual = l2.withDual := by
|
||
rw [append_withDual_eq_withUniqueDual_symm] at h
|
||
exact append_withDual_eq_withUniqueDual_inl l2 l h
|
||
|
||
@[simp]
|
||
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl
|
||
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||
l.withUniqueDualInOther l2 = l.withDualInOther l2 := by
|
||
rw [Finset.ext_iff]
|
||
intro i
|
||
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
|
||
· simp only [mem_withInDualOther_iff_isSome, h', mem_withUniqueDualInOther_isSome]
|
||
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
|
||
rw [h]
|
||
simp_all only [mem_withInDualOther_iff_isSome, mem_withDual_iff_isSome,
|
||
getDual?_isSome_append_inl_iff, or_true, mem_withUniqueDual_isSome]
|
||
refine l.mem_withUniqueDualInOther_of_inl_withDualInOther l2 i hn ?_
|
||
exact (mem_withInDualOther_iff_isSome l l2 i).mp h'
|
||
|
||
@[simp]
|
||
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr
|
||
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||
l2.withUniqueDualInOther l = l2.withDualInOther l := by
|
||
rw [append_withDual_eq_withUniqueDual_symm] at h
|
||
exact append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l2 l h
|
||
|
||
lemma append_withDual_eq_withUniqueDual_iff' :
|
||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||
l.withUniqueDual = l.withDual ∧ l2.withUniqueDual = l2.withDual
|
||
∧ l.withUniqueDualInOther l2 = l.withDualInOther l2 ∧
|
||
l2.withUniqueDualInOther l = l2.withDualInOther l := by
|
||
apply Iff.intro
|
||
· intro h
|
||
exact ⟨append_withDual_eq_withUniqueDual_inl l l2 h,
|
||
append_withDual_eq_withUniqueDual_inr l l2 h,
|
||
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l l2 h,
|
||
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr l l2 h⟩
|
||
· intro h
|
||
rw [append_withDual_eq_withUniqueDual_iff]
|
||
rw [h.1, h.2.1, h.2.2.1, h.2.2.2]
|
||
have h1 : l.withDual ∩ (l.withDualInOther l2)ᶜ = l.withDual := by
|
||
rw [Finset.inter_eq_left, Finset.subset_iff, ← h.1, ← h.2.2.1]
|
||
intro i hi
|
||
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true,
|
||
Option.not_isSome, Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome,
|
||
Finset.compl_filter, not_and, not_forall, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
intro hn
|
||
simp_all
|
||
have h2 : l2.withDual ∩ (l2.withDualInOther l)ᶜ = l2.withDual := by
|
||
rw [Finset.inter_eq_left, Finset.subset_iff, ← h.2.1, ← h.2.2.2]
|
||
intro i hi
|
||
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true,
|
||
Option.not_isSome, Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome,
|
||
Finset.compl_filter, not_and, not_forall, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
intro hn
|
||
simp_all
|
||
exact ⟨congrFun (congrArg Union.union h1) (l.withDualInOther l2),
|
||
congrFun (congrArg Union.union h2) (l2.withDualInOther l)⟩
|
||
|
||
lemma append_withDual_eq_withUniqueDual_swap :
|
||
(l ++ l2 ++ l3).withUniqueDual = (l ++ l2 ++ l3).withDual
|
||
↔ (l2 ++ l ++ l3).withUniqueDual = (l2 ++ l ++ l3).withDual := by
|
||
rw [append_withDual_eq_withUniqueDual_iff']
|
||
rw [append_withDual_eq_withUniqueDual_iff' (l2 ++ l) l3]
|
||
rw [append_withDual_eq_withUniqueDual_symm]
|
||
rw [withUniqueDualInOther_eq_withDualInOther_of_append_symm]
|
||
rw [withUniqueDualInOther_eq_withDualInOther_append_of_symm]
|
||
|
||
end IndexList
|
||
|
||
end IndexNotation
|