PhysLean/HepLean/SpaceTime/LorentzAlgebra/Basis.lean
2024-06-12 11:47:38 -04:00

75 lines
2.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzAlgebra.Basic
/-!
# Basis of the Lorentz Algebra
We define the standard basis of the Lorentz group.
-/
namespace spaceTime
namespace lorentzAlgebra
open Matrix
/-- The matrices which form the basis of the Lorentz algebra. -/
@[simp]
def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) := fun ρ δ ↦
η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν]
lemma σMat_in_lorentzAlgebra (μ ν : Fin 4) : σMat μ ν ∈ lorentzAlgebra := by
rw [mem_iff]
funext ρ δ
rw [Matrix.neg_mul, Matrix.neg_apply, η_mul, mul_η, transpose_apply]
apply Eq.trans ?_ (by ring :
- ((η^[ρ]_[μ] * η_[ρ]_[ρ]) * η_[ν]_[δ] - η_[μ]_[δ] * (η^[ρ]_[ν] * η_[ρ]_[ρ])) =
-(η_[ρ]_[ρ] * (η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν])))
apply Eq.trans (by ring : (η^[δ]_[μ] * η_[ν]_[ρ] - η_[μ]_[ρ] * η^[δ]_[ν]) * η_[δ]_[δ]
= ((η^[δ]_[μ] * η_[δ]_[δ]) * η_[ν]_[ρ] - η_[μ]_[ρ] * (η^[δ]_[ν] * η_[δ]_[δ])))
rw [η_mul_self, η_mul_self, η_mul_self, η_mul_self]
ring
/-- Elements of the Lorentz algebra which form a basis thereof. -/
@[simps!]
def σν : Fin 4) : lorentzAlgebra := ⟨σMat μ ν, σMat_in_lorentzAlgebra μ ν⟩
lemma σ_anti_symm (μ ν : Fin 4) : σ μ ν = - σ ν μ := by
refine SetCoe.ext ?_
funext ρ δ
simp only [σ_coe, σMat, NegMemClass.coe_neg, neg_apply, neg_sub]
ring
lemma σMat_mul (α β γ δ a b: Fin 4) :
(σMat α β * σMat γ δ) a b =
η^[a]_[α] * (η_[δ]_[b] * η_[β]_[γ] - η_[γ]_[b] * η_[β]_[δ])
- η^[a]_[β] * (η_[δ]_[b] * η_[α]_[γ]- η_[γ]_[b] * η_[α]_[δ]) := by
rw [Matrix.mul_apply]
simp only [σMat]
trans (η^[a]_[α] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[β]_[x]
- (η^[a]_[α] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[β]_[x]
- (η^[a]_[β] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[α]_[x]
+ (η^[a]_[β] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[α]_[x]
repeat rw [Fin.sum_univ_four]
ring
rw [η_contract_self', η_contract_self', η_contract_self', η_contract_self']
ring
lemma σ_comm (α β γ δ : Fin 4) :
⁅σ α β , σ γ δ⁆ =
η_[α]_[δ] • σ β γ + η_[α]_[γ] • σ δ β + η_[β]_[δ] • σ γ α + η_[β]_[γ] • σ α δ := by
refine SetCoe.ext ?_
change σMat α β * σ γ δ - σ γ δ * σ α β = _
funext a b
simp only [σ_coe, sub_apply, AddSubmonoid.coe_add, Submodule.coe_toAddSubmonoid,
Submodule.coe_smul_of_tower, add_apply, smul_apply, σMat, smul_eq_mul]
rw [σMat_mul, σMat_mul, η_symmetric α γ, η_symmetric α δ, η_symmetric β γ, η_symmetric β δ]
ring
end lorentzAlgebra
end spaceTime