PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/WicksTheoremNormal.lean
2025-02-03 06:14:33 +00:00

201 lines
9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.TimeCond
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.StaticWickTheorem
import HepLean.Meta.Remark.Basic
/-!
# Wick's theorem for normal ordered lists
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open CrAnAlgebra
namespace FieldOpAlgebra
open WickContraction
open EqTimeOnly
lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.States) :
timeOrder (ofFieldOpList φs) = ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs)}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
rw [static_wick_theorem φs]
let e2 : WickContraction φs.length ≃
{φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} ⊕
{φsΛ : WickContraction φs.length // ¬ φsΛ.EqTimeOnly} :=
(Equiv.sumCompl _).symm
rw [← e2.symm.sum_comp]
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, map_add, map_sum, map_smul, e2]
conv_lhs =>
enter [2, 2, x]
rw [timeOrder_timeOrder_left]
rw [timeOrder_staticContract_of_not_mem _ x.2]
simp only [Finset.univ_eq_attach, zero_mul, map_zero, smul_zero, Finset.sum_const_zero, add_zero]
congr
funext x
rw [staticContract_eq_timeContract_of_eqTimeOnly]
rw [timeOrder_timeContract_mul_of_eqTimeOnly_left]
exact x.2
exact x.2
lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.States) :
timeOrder (ofFieldOpList φs) = 𝓣(𝓝(ofFieldOpList φs)) +
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
let e1 : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} ≃
{φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // φsΛ.1 = empty} ⊕
{φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // ¬ φsΛ.1 = empty} :=
(Equiv.sumCompl _).symm
rw [timeOrder_ofFieldOpList_eqTimeOnly, ← e1.symm.sum_comp]
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, ne_eq, e1]
congr 1
· let e2 : {φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // φsΛ.1 = empty } ≃
Unit := {
toFun := fun x => (), invFun := fun x => ⟨⟨empty, by simp⟩, rfl⟩,
left_inv a := by
ext
simp [a.2], right_inv a := by simp}
rw [← e2.symm.sum_comp]
simp [e2, sign_empty]
· let e2 : { φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly} // ¬ φsΛ.1 = empty } ≃
{φsΛ // φsΛ.EqTimeOnly ∧ φsΛ ≠ empty} := {
toFun := fun x => ⟨x, ⟨x.1.2, x.2⟩⟩, invFun := fun x => ⟨⟨x.1, x.2.1⟩, x.2.2⟩,
left_inv a := by rfl, right_inv a := by rfl }
rw [← e2.symm.sum_comp]
rfl
lemma normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.States) :
𝓣(𝓝(ofFieldOpList φs)) = 𝓣(ofFieldOpList φs) -
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
rw [timeOrder_ofFieldOpList_eq_eqTimeOnly_empty]
simp
lemma normalOrder_timeOrder_ofFieldOpList_eq_haveEqTime_sum_not_haveEqTime (φs : List 𝓕.States) :
𝓣(𝓝(ofFieldOpList φs)) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
+ (∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
- ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
rw [normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty]
rw [wicks_theorem]
let e1 : WickContraction φs.length ≃ {φsΛ // HaveEqTime φsΛ} ⊕ {φsΛ // ¬ HaveEqTime φsΛ} := by
exact (Equiv.sumCompl HaveEqTime).symm
rw [← e1.symm.sum_comp]
simp only [Equiv.symm_symm, Algebra.smul_mul_assoc, Fintype.sum_sum_type,
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, ne_eq, sub_left_inj, e1]
rw [add_comm]
lemma haveEqTime_wick_sum_eq_split (φs : List 𝓕.States) :
(∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) =
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
(sign φs ↑φsΛ • (φsΛ.1).timeContract *
∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬φssucΛ.HaveEqTime },
sign [φsΛ.1]ᵘᶜ φssucΛ •
(φssucΛ.1).timeContract * normalOrder (ofFieldOpList [φssucΛ.1]ᵘᶜ)) := by
let f : WickContraction φs.length → 𝓕.FieldOpAlgebra := fun φsΛ =>
φsΛ.sign • φsΛ.timeContract.1 * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
change ∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}), f φsΛ.1 = _
rw [sum_haveEqTime]
congr
funext φsΛ
simp only [f]
conv_lhs =>
enter [2, φsucΛ]
enter [1]
rw [join_sign_timeContract φsΛ.1 φsucΛ.1]
conv_lhs =>
enter [2, φsucΛ]
rw [mul_assoc]
rw [← Finset.mul_sum]
congr
funext φsΛ'
simp only [ne_eq, Algebra.smul_mul_assoc]
congr 1
rw [@join_uncontractedListGet]
lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs : List 𝓕.States) :
𝓣(𝓝(ofFieldOpList φs)) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
sign φs ↑φsΛ • (φsΛ.1).timeContract *
(∑ φssucΛ : { φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ φssucΛ.HaveEqTime },
sign [φsΛ.1]ᵘᶜ φssucΛ • (φssucΛ.1).timeContract * normalOrder (ofFieldOpList [φssucΛ.1]ᵘᶜ) -
𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))) := by
rw [normalOrder_timeOrder_ofFieldOpList_eq_haveEqTime_sum_not_haveEqTime]
rw [add_sub_assoc]
congr 1
rw [haveEqTime_wick_sum_eq_split]
simp only [ne_eq, Algebra.smul_mul_assoc]
rw [← Finset.sum_sub_distrib]
congr 1
funext x
simp only
rw [← smul_sub, ← mul_sub]
lemma wicks_theorem_normal_order_empty : 𝓣(𝓝(ofFieldOpList [])) =
∑ (φsΛ : {φsΛ : WickContraction ([] : List 𝓕.States).length // ¬ HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ) := by
let e2 : {φsΛ : WickContraction ([] : List 𝓕.States).length // ¬ HaveEqTime φsΛ} ≃ Unit :=
{
toFun := fun x => (),
invFun := fun x => ⟨empty, by simp⟩,
left_inv := by
intro a
simp only [List.length_nil]
apply Subtype.eq
apply Subtype.eq
simp only [empty]
ext i
simp only [Finset.not_mem_empty, false_iff]
by_contra hn
have h2 := a.1.2.1 i hn
rw [@Finset.card_eq_two] at h2
obtain ⟨a, b, ha, hb, hab⟩ := h2
exact Fin.elim0 a,
right_inv := by intro a; simp}
rw [← e2.symm.sum_comp]
simp only [Finset.univ_unique, PUnit.default_eq_unit, List.length_nil, Equiv.coe_fn_symm_mk,
sign_empty, timeContract_empty, OneMemClass.coe_one, one_smul, uncontractedListGet_empty,
one_mul, Finset.sum_const, Finset.card_singleton, e2]
have h1' : ofFieldOpList (𝓕 := 𝓕) [] = ofCrAnFieldOpList [] := by rfl
rw [h1']
rw [normalOrder_ofCrAnFieldOpList]
simp only [normalOrderSign_nil, normalOrderList_nil, one_smul]
rw [ofCrAnFieldOpList, timeOrder_eq_ι_timeOrderF]
rw [timeOrderF_ofCrAnList]
simp
theorem wicks_theorem_normal_order : (φs : List 𝓕.States) →
𝓣(𝓝(ofFieldOpList φs)) = ∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)
| [] => wicks_theorem_normal_order_empty
| φ :: φs => by
rw [normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive]
simp only [Algebra.smul_mul_assoc, ne_eq, add_right_eq_self]
apply Finset.sum_eq_zero
intro φsΛ hφsΛ
simp only [smul_eq_zero]
right
have ih := wicks_theorem_normal_order [φsΛ.1]ᵘᶜ
rw [ih]
simp
termination_by φs => φs.length
decreasing_by
simp only [uncontractedListGet, List.length_cons, List.length_map, gt_iff_lt]
rw [uncontractedList_length_eq_card]
have hc := uncontracted_card_eq_iff φsΛ.1
simp only [List.length_cons, φsΛ.2.2, iff_false] at hc
have hc' := uncontracted_card_le φsΛ.1
simp_all only [Algebra.smul_mul_assoc, List.length_cons, Finset.mem_univ, gt_iff_lt]
omega
end FieldOpAlgebra
end FieldSpecification