PhysLean/HepLean/SpaceTime/Metric.lean
2024-05-22 09:18:12 -04:00

232 lines
9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.LinearAlgebra.CliffordAlgebra.Basic
/-!
# Spacetime Metric
This file introduces the metric on spacetime in the (+, -, -, -) signature.
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The metric as a `4×4` real matrix. -/
def η : Matrix (Fin 4) (Fin 4) :=
!![1, 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, 0, -1]
lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by
fin_cases μ <;>
fin_cases ν <;>
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by
by_cases h : μ = ν
rw [h]
rw [η_off_diagonal h]
refine (η_off_diagonal ?_).symm
exact fun a => h (id a.symm)
lemma η_transpose : η.transpose = η := by
funext μ ν
rw [transpose_apply, η_symmetric]
lemma det_η : η.det = - 1 := by
simp only [η, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, of_apply,
cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply, Fin.succ_zero_eq_one,
cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply, Fin.succ_one_eq_two,
cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ, head_fin_const,
Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove, Finset.univ_unique,
Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul, Fin.succ_succAbove_zero,
Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one, even_two, Even.neg_pow,
one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero, zero_mul,
Finset.sum_const_zero]
lemma η_sq : η * η = 1 := by
funext μ ν
rw [mul_apply, Fin.sum_univ_four]
fin_cases μ <;> fin_cases ν <;>
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv (
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ) 0 0 (-1 : Matrix (Fin 3) (Fin 3) )) := by
apply Matrix.ext
intro i j
fin_cases i <;> fin_cases j
<;> simp_all only [Fin.zero_eta, reindex_apply, submatrix_apply]
any_goals rfl
all_goals simp [finSumFinEquiv, Fin.addCases, η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
any_goals rfl
all_goals split
all_goals simp
all_goals rfl
lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by
fin_cases μ
<;> simp [η]
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
rw [explicit x]
rw [η]
funext i
rw [mulVec, dotProduct, Fin.sum_univ_four]
fin_cases i <;>
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
/-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/
@[simps!]
def linearMapForSpaceTime (x : spaceTime) : spaceTime →ₗ[] where
toFun y := x ⬝ᵥ (η *ᵥ y)
map_add' y z := by
simp only
rw [mulVec_add, dotProduct_add]
map_smul' c y := by
simp only
rw [mulVec_smul, dotProduct_smul]
rfl
/-- The metric as a bilinear map from `spaceTime` to ``. -/
def ηLin : LinearMap.BilinForm spaceTime where
toFun x := linearMapForSpaceTime x
map_add' x y := by
apply LinearMap.ext
intro z
simp only [linearMapForSpaceTime_apply, LinearMap.add_apply]
rw [add_dotProduct]
map_smul' c x := by
apply LinearMap.ext
intro z
simp only [linearMapForSpaceTime_apply, RingHom.id_apply, LinearMap.smul_apply, smul_eq_mul]
rw [smul_dotProduct]
rfl
lemma ηLin_expand (x y : spaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 * y 2 - x 3 * y 3 := by
rw [ηLin]
simp only [LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, Fin.isValue]
erw [η_mulVec]
nth_rewrite 1 [explicit x]
simp only [dotProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.sum_univ_four,
cons_val_zero, cons_val_one, head_cons, mul_neg, cons_val_two, tail_cons, cons_val_three]
ring
lemma ηLin_expand_self (x : spaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by
rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand]
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one,
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
ring
lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by
rw [ηLin_expand_self]
ring
lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
rw [time_elm_sq_of_ηLin]
apply (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
lemma ηLin_space_inner_product (x y : spaceTime) :
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by
rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three]
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one,
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
ring
lemma ηLin_ge_abs_inner_product (x y : spaceTime) :
x 0 * y 0 - ‖⟪x.space, y.space⟫_‖ ≤ (ηLin x y) := by
rw [ηLin_space_inner_product, sub_le_sub_iff_left]
exact Real.le_norm_self ⟪x.space, y.space⟫_
lemma ηLin_ge_sub_norm (x y : spaceTime) :
x 0 * y 0 - ‖x.space‖ * ‖y.space‖ ≤ (ηLin x y) := by
apply le_trans ?_ (ηLin_ge_abs_inner_product x y)
rw [sub_le_sub_iff_left]
exact norm_inner_le_norm x.space y.space
lemma ηLin_symm (x y : spaceTime) : ηLin x y = ηLin y x := by
rw [ηLin_expand, ηLin_expand]
ring
lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x = η μ μ * x μ := by
rw [ηLin_expand]
fin_cases μ
<;> simp [stdBasis_0, stdBasis_1, stdBasis_2, stdBasis_3, η]
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
rw [ηLin_stdBasis_apply]
by_cases h : μ = ν
rw [stdBasis_apply]
subst h
simp only [↓reduceIte, mul_one]
rw [stdBasis_not_eq, η_off_diagonal h]
simp only [mul_zero]
exact fun a => h (id a.symm)
lemma ηLin_mulVec_left (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by
simp only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec]
rw [(vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec]
rw [← mul_assoc, ← mul_assoc, η_sq, one_mul]
lemma ηLin_mulVec_right (x y : spaceTime) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by
rw [ηLin_symm, ηLin_symm ((η * Λᵀ * η) *ᵥ x) _ ]
exact ηLin_mulVec_left y x Λ
lemma ηLin_matrix_stdBasis (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ) :
ηLin (stdBasis ν) (Λ *ᵥ stdBasis μ) = η ν ν * Λ ν μ := by
rw [ηLin_stdBasis_apply, stdBasis_mulVec]
lemma ηLin_matrix_stdBasis' (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ) :
Λ ν μ = η ν ν * ηLin (stdBasis ν) (Λ *ᵥ stdBasis μ) := by
rw [ηLin_matrix_stdBasis, ← mul_assoc, η_diag_mul_self, one_mul]
lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
Λ = 1 ↔ ∀ (x y : spaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by
apply Iff.intro
intro h
subst h
simp only [ηLin, one_mulVec, implies_true]
intro h
funext μ ν
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
/-- The metric as a quadratic form on `spaceTime`. -/
def quadraticForm : QuadraticForm spaceTime := ηLin.toQuadraticForm
end spaceTime
end