PhysLean/HepLean/GroupTheory/SO3/Basic.lean
2024-05-22 16:50:53 -04:00

234 lines
7.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.UnitaryGroup
import Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.LinearAlgebra.Eigenspace.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
/-!
# The group SO(3)
-/
namespace GroupTheory
open Matrix
/-- The group of `3×3` real matrices with determinant 1 and `A * Aᵀ = 1`. -/
def SO3 : Type := {A : Matrix (Fin 3) (Fin 3) // A.det = 1 ∧ A * Aᵀ = 1}
@[simps mul_coe one_coe inv div]
instance SO3Group : Group SO3 where
mul A B := ⟨A.1 * B.1,
by
simp only [det_mul, A.2.1, B.2.1, mul_one],
by
simp [A.2.2, B.2.2, ← Matrix.mul_assoc, Matrix.mul_assoc]⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, by simp, by simp⟩
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
inv A := ⟨A.1ᵀ, by simp [A.2], by simp [mul_eq_one_comm.mpr A.2.2]⟩
mul_left_inv A := by
apply Subtype.eq
exact mul_eq_one_comm.mpr A.2.2
/-- Notation for the group `SO3`. -/
scoped[GroupTheory] notation (name := SO3_notation) "SO(3)" => SO3
/-- SO3 has the subtype topology. -/
instance : TopologicalSpace SO3 := instTopologicalSpaceSubtype
namespace SO3
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact mul_eq_one_comm.mpr A.2.2
/-- The inclusion of `SO(3)` into `GL (Fin 3) `. -/
def toGL : SO(3) →* GL (Fin 3) where
toFun A := ⟨A.1, (A⁻¹).1, A.2.2, mul_eq_one_comm.mpr A.2.2⟩
map_one' := by
simp
rfl
map_mul' x y := by
simp only [_root_.mul_inv_rev, coe_inv]
ext
rfl
lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ) =
Units.val ∘ toGL.toFun := by
ext A
rfl
lemma toGL_injective : Function.Injective toGL := by
intro A B h
apply Subtype.eq
rw [@Units.ext_iff] at h
simpa using h
/-- The inclusion of `SO(3)` into the monoid of matrices times the opposite of
the monoid of matrices. -/
@[simps!]
def toProd : SO(3) →* (Matrix (Fin 3) (Fin 3) ) × (Matrix (Fin 3) (Fin 3) )ᵐᵒᵖ :=
MonoidHom.comp (Units.embedProduct _) toGL
lemma toProd_eq_transpose : toProd A = (A.1, ⟨A.1ᵀ⟩) := by
simp only [toProd, Units.embedProduct, coe_units_inv, MulOpposite.op_inv, toGL, coe_inv,
MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply, Prod.mk.injEq,
true_and]
refine MulOpposite.unop_inj.mp ?_
simp only [MulOpposite.unop_inv, MulOpposite.unop_op]
rw [← coe_inv]
rfl
lemma toProd_injective : Function.Injective toProd := by
intro A B h
rw [toProd_eq_transpose, toProd_eq_transpose] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨A.1ᵀ⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
exact MulOpposite.continuous_op
refine Continuous.matrix_transpose ?_
exact continuous_iff_le_induced.mpr fun U a => a
/-- The embedding of `SO(3)` into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
/-- The embedding of `SO(3)` into `GL (Fin 3) `. -/
lemma toGL_embedding : Embedding toGL.toFun where
inj := toGL_injective
induced := by
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
intro s
rw [TopologicalSpace.ext_iff.mp toProd_embedding.induced s ]
rw [isOpen_induced_iff, isOpen_induced_iff]
apply Iff.intro ?_ ?_
· intro h
obtain ⟨U, hU1, hU2⟩ := h
rw [isOpen_induced_iff] at hU1
obtain ⟨V, hV1, hV2⟩ := hU1
use V
simp [hV1]
rw [← hU2, ← hV2]
rfl
· intro h
obtain ⟨U, hU1, hU2⟩ := h
let t := (Units.embedProduct _) ⁻¹' U
use t
apply And.intro (isOpen_induced hU1)
exact hU2
instance : TopologicalGroup SO(3) :=
Inducing.topologicalGroup toGL toGL_embedding.toInducing
lemma det_minus_id (A : SO(3)) : det (A.1 - 1) = 0 := by
have h1 : det (A.1 - 1) = - det (A.1 - 1) :=
calc
det (A.1 - 1) = det (A.1 - A.1 * A.1ᵀ) := by simp [A.2.2]
_ = det A.1 * det (1 - A.1ᵀ) := by rw [← det_mul, mul_sub, mul_one]
_ = det (1 - A.1ᵀ):= by simp [A.2.1]
_ = det (1 - A.1ᵀ)ᵀ := by rw [det_transpose]
_ = det (1 - A.1) := by simp
_ = det (- (A.1 - 1)) := by simp
_ = (- 1) ^ 3 * det (A.1 - 1) := by simp only [det_neg, Fintype.card_fin, neg_mul, one_mul]
_ = - det (A.1 - 1) := by simp [pow_three]
simpa using h1
@[simp]
lemma det_id_minus (A : SO(3)) : det (1 - A.1) = 0 := by
have h1 : det (1 - A.1) = - det (A.1 - 1) := by
calc
det (1 - A.1) = det (- (A.1 - 1)) := by simp
_ = (- 1) ^ 3 * det (A.1 - 1) := by simp only [det_neg, Fintype.card_fin, neg_mul, one_mul]
_ = - det (A.1 - 1) := by simp [pow_three]
rw [h1, det_minus_id]
simp only [neg_zero]
@[simp]
lemma one_in_spectrum (A : SO(3)) : 1 ∈ spectrum (A.1) := by
rw [spectrum.mem_iff]
simp only [_root_.map_one]
rw [Matrix.isUnit_iff_isUnit_det]
simp
noncomputable section action
open Module
/-- The endomorphism of `EuclideanSpace (Fin 3)` associated to a element of `SO(3)`. -/
@[simps!]
def toEnd (A : SO(3)) : End (EuclideanSpace (Fin 3)) :=
Matrix.toLin (EuclideanSpace.basisFun (Fin 3) ).toBasis
(EuclideanSpace.basisFun (Fin 3) ).toBasis A.1
lemma one_is_eigenvalue (A : SO(3)) : A.toEnd.HasEigenvalue 1 := by
rw [End.hasEigenvalue_iff_mem_spectrum]
erw [AlgEquiv.spectrum_eq (Matrix.toLinAlgEquiv (EuclideanSpace.basisFun (Fin 3) ).toBasis ) A.1]
exact one_in_spectrum A
lemma exists_stationary_vec (A : SO(3)) :
∃ (v : EuclideanSpace (Fin 3)),
Orthonormal (({0} : Set (Fin 3)).restrict (fun _ => v ))
∧ A.toEnd v = v := by
obtain ⟨v, hv⟩ := End.HasEigenvalue.exists_hasEigenvector $ one_is_eigenvalue A
have hvn : ‖v‖ ≠ 0 := norm_ne_zero_iff.mpr hv.2
use (1/‖v‖) • v
apply And.intro
rw [@orthonormal_iff_ite]
intro v1 v2
have hv1 := v1.2
have hv2 := v2.2
simp_all only [one_div, Set.mem_singleton_iff]
have hveq : v1 = v2 := by
rw [@Subtype.ext_iff]
simp_all only
subst hveq
simp only [Set.restrict_apply, PiLp.smul_apply, smul_eq_mul,
_root_.map_mul, map_inv₀, conj_trivial, ↓reduceIte]
rw [inner_smul_right, inner_smul_left, real_inner_self_eq_norm_sq v]
field_simp
ring
rw [_root_.map_smul, End.mem_eigenspace_iff.mp hv.1 ]
simp
lemma exists_basis_preserved (A : SO(3)) :
∃ (b : OrthonormalBasis (Fin 3) (EuclideanSpace (Fin 3))), A.toEnd (b 0) = b 0 := by
obtain ⟨v, hv⟩ := exists_stationary_vec A
have h3 : FiniteDimensional.finrank (EuclideanSpace (Fin 3)) = Fintype.card (Fin 3) := by
simp_all only [toEnd_apply, finrank_euclideanSpace, Fintype.card_fin]
obtain ⟨b, hb⟩ := Orthonormal.exists_orthonormalBasis_extension_of_card_eq h3 hv.1
simp at hb
use b
rw [hb, hv.2]
end action
end SO3
end GroupTheory