191 lines
7.5 KiB
Text
191 lines
7.5 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.MSSMNu.Basic
|
||
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Tactic.Linarith
|
||
/-!
|
||
# The type of solutions perpendicular to `Y₃` and `B₃`
|
||
|
||
We define the type of solutions which are orthogonal to `Y₃` and `B₃` and prove some basic lemmas
|
||
about them.
|
||
|
||
# References
|
||
|
||
The main reference for the material in this file is:
|
||
|
||
- https://arxiv.org/pdf/2107.07926.pdf
|
||
|
||
-/
|
||
universe v u
|
||
|
||
namespace MSSMACC
|
||
open MSSMCharges
|
||
open MSSMACCs
|
||
open BigOperators
|
||
|
||
/-- The type of linear solutions orthogonal to $Y_3$ and $B_3$. -/
|
||
structure AnomalyFreePerp extends MSSMACC.LinSols where
|
||
perpY₃ : dot Y₃.val val = 0
|
||
perpB₃ : dot B₃.val val = 0
|
||
|
||
/-- The projection of an object in `MSSMACC.AnomalyFreeLinear` onto the subspace
|
||
orthgonal to `Y₃` and`B₃`. -/
|
||
def proj (T : MSSMACC.LinSols) : MSSMACC.AnomalyFreePerp :=
|
||
⟨(dot B₃.val T.val - dot Y₃.val T.val) • Y₃.1.1
|
||
+ (dot Y₃.val T.val - 2 * dot B₃.val T.val) • B₃.1.1
|
||
+ dot Y₃.val B₃.val • T,
|
||
by
|
||
change dot _ (_ • Y₃.val + _ • B₃.val + _ • T.val) = 0
|
||
rw [dot.map_add₂, dot.map_add₂]
|
||
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
|
||
rw [show dot Y₃.val B₃.val = 108 by rfl]
|
||
rw [show dot Y₃.val Y₃.val = 216 by rfl]
|
||
ring,
|
||
by
|
||
change dot _ (_ • Y₃.val + _ • B₃.val + _ • T.val) = 0
|
||
rw [dot.map_add₂, dot.map_add₂]
|
||
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
|
||
rw [show dot Y₃.val B₃.val = 108 by rfl]
|
||
rw [show dot B₃.val Y₃.val = 108 by rfl]
|
||
rw [show dot B₃.val B₃.val = 108 by rfl]
|
||
ring⟩
|
||
|
||
lemma proj_val (T : MSSMACC.LinSols) :
|
||
(proj T).val = (dot B₃.val T.val - dot Y₃.val T.val) • Y₃.val +
|
||
( (dot Y₃.val T.val - 2 * dot B₃.val T.val)) • B₃.val +
|
||
dot Y₃.val B₃.val • T.val := by
|
||
rfl
|
||
|
||
lemma Y₃_plus_B₃_plus_proj (T : MSSMACC.LinSols) (a b c : ℚ) :
|
||
a • Y₃.val + b • B₃.val + c • (proj T).val =
|
||
(a + c * (dot B₃.val T.val - dot Y₃.val T.val)) • Y₃.val
|
||
+ (b + c * (dot Y₃.val T.val - 2 * dot B₃.val T.val)) • B₃.val
|
||
+ (dot Y₃.val B₃.val * c) • T.val:= by
|
||
rw [proj_val]
|
||
rw [DistribMulAction.smul_add, DistribMulAction.smul_add]
|
||
rw [add_assoc (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val + _ • B₃.val), add_assoc (_ • Y₃.val)]
|
||
rw [add_comm (_ • B₃.val) (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val)]
|
||
rw [← MulAction.mul_smul, ← Module.add_smul]
|
||
repeat rw [add_assoc]
|
||
apply congrArg
|
||
rw [← add_assoc, ← MulAction.mul_smul, ← Module.add_smul]
|
||
apply congrArg
|
||
simp only [HSMul.hSMul, SMul.smul, MSSMACC_numberCharges, Fin.isValue, Fin.reduceFinMk]
|
||
funext i
|
||
linarith
|
||
|
||
|
||
|
||
lemma quad_Y₃_proj (T : MSSMACC.LinSols) :
|
||
quadBiLin Y₃.val (proj T).val = dot Y₃.val B₃.val * quadBiLin Y₃.val T.val := by
|
||
rw [proj_val]
|
||
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
|
||
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
|
||
rw [show quadBiLin Y₃.val B₃.val = 0 by rfl]
|
||
rw [show quadBiLin Y₃.val Y₃.val = 0 by rfl]
|
||
ring
|
||
|
||
lemma quad_B₃_proj (T : MSSMACC.LinSols) :
|
||
quadBiLin B₃.val (proj T).val = dot Y₃.val B₃.val * quadBiLin B₃.val T.val := by
|
||
rw [proj_val]
|
||
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
|
||
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
|
||
rw [show quadBiLin B₃.val Y₃.val = 0 by rfl]
|
||
rw [show quadBiLin B₃.val B₃.val = 0 by rfl]
|
||
ring
|
||
|
||
lemma quad_self_proj (T : MSSMACC.Sols) :
|
||
quadBiLin T.val (proj T.1.1).val =
|
||
(dot B₃.val T.val - dot Y₃.val T.val) * quadBiLin Y₃.val T.val +
|
||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val := by
|
||
rw [proj_val]
|
||
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
|
||
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
|
||
erw [quadSol T.1]
|
||
rw [quadBiLin.swap T.val Y₃.val, quadBiLin.swap T.val B₃.val]
|
||
ring
|
||
|
||
lemma quad_proj (T : MSSMACC.Sols) :
|
||
quadBiLin (proj T.1.1).val (proj T.1.1).val = 2 * dot Y₃.val B₃.val *
|
||
((dot B₃.val T.val - dot Y₃.val T.val) * quadBiLin Y₃.val T.val +
|
||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val ) := by
|
||
nth_rewrite 1 [proj_val]
|
||
repeat rw [quadBiLin.map_add₁]
|
||
repeat rw [quadBiLin.map_smul₁]
|
||
rw [quad_Y₃_proj, quad_B₃_proj, quad_self_proj]
|
||
ring
|
||
|
||
|
||
lemma cube_proj_proj_Y₃ (T : MSSMACC.LinSols) :
|
||
cubeTriLin ((proj T).val, (proj T).val, Y₃.val) =
|
||
(dot Y₃.val B₃.val)^2 * cubeTriLin (T.val, T.val, Y₃.val) := by
|
||
rw [proj_val]
|
||
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
|
||
erw [lineY₃B₃_doublePoint]
|
||
rw [cubeTriLin.map_add₂]
|
||
rw [cubeTriLin.swap₂]
|
||
rw [cubeTriLin.map_add₁, cubeTriLin.map_smul₁, cubeTriLin.map_smul₃]
|
||
rw [doublePoint_Y₃_Y₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁]
|
||
rw [doublePoint_Y₃_B₃]
|
||
rw [cubeTriLin.map_add₂]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||
rw [cubeTriLin.swap₁, cubeTriLin.swap₂]
|
||
rw [doublePoint_Y₃_Y₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, cubeTriLin.swap₁]
|
||
rw [doublePoint_Y₃_B₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||
ring
|
||
|
||
lemma cube_proj_proj_B₃ (T : MSSMACC.LinSols) :
|
||
cubeTriLin ((proj T).val, (proj T).val, B₃.val) =
|
||
(dot Y₃.val B₃.val)^2 * cubeTriLin (T.val, T.val, B₃.val) := by
|
||
rw [proj_val]
|
||
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
|
||
erw [lineY₃B₃_doublePoint]
|
||
rw [cubeTriLin.map_add₂, cubeTriLin.swap₂, cubeTriLin.map_add₁, cubeTriLin.map_smul₁,
|
||
cubeTriLin.map_smul₃, doublePoint_Y₃_B₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁, doublePoint_B₃_B₃]
|
||
rw [cubeTriLin.map_add₂, cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, doublePoint_Y₃_B₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.swap₁, cubeTriLin.swap₂,
|
||
cubeTriLin.swap₁, doublePoint_B₃_B₃]
|
||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||
ring
|
||
|
||
lemma cube_proj_proj_self (T : MSSMACC.Sols) :
|
||
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, T.val) =
|
||
2 * dot Y₃.val B₃.val *
|
||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin (T.val, T.val, Y₃.val) +
|
||
( dot Y₃.val T.val- 2 * dot B₃.val T.val) * cubeTriLin (T.val, T.val, B₃.val)) := by
|
||
rw [proj_val]
|
||
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
|
||
erw [lineY₃B₃_doublePoint]
|
||
repeat rw [cubeTriLin.map_add₁]
|
||
repeat rw [cubeTriLin.map_smul₁]
|
||
repeat rw [cubeTriLin.map_add₂]
|
||
repeat rw [cubeTriLin.map_smul₂]
|
||
erw [T.cubicSol]
|
||
rw [cubeTriLin.swap₁ Y₃.val T.val T.val, cubeTriLin.swap₂ T.val Y₃.val T.val]
|
||
rw [cubeTriLin.swap₁ B₃.val T.val T.val, cubeTriLin.swap₂ T.val B₃.val T.val]
|
||
ring
|
||
|
||
lemma cube_proj (T : MSSMACC.Sols) :
|
||
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, (proj T.1.1).val) =
|
||
3 * dot Y₃.val B₃.val ^ 2 *
|
||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin (T.val, T.val, Y₃.val) +
|
||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * cubeTriLin (T.val, T.val, B₃.val)) := by
|
||
nth_rewrite 3 [proj_val]
|
||
repeat rw [cubeTriLin.map_add₃]
|
||
repeat rw [cubeTriLin.map_smul₃]
|
||
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, cube_proj_proj_self]
|
||
ring
|
||
|
||
|
||
|
||
end MSSMACC
|