81 lines
2.6 KiB
Text
81 lines
2.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.TensorSpecies.Basic
|
||
/-!
|
||
|
||
# Pure tensors
|
||
|
||
A pure tensor is one of the form `ψ1 ⊗ ψ2 ⊗ ... ⊗ ψn`.
|
||
We say a tensor is pure if it is of this form.
|
||
|
||
-/
|
||
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
|
||
noncomputable section
|
||
|
||
namespace TensorSpecies
|
||
variable (S : TensorSpecies)
|
||
|
||
/-- The type of tensors specified by a map to colors `c : OverColor S.C`. -/
|
||
def Pure (c : OverColor S.C) : Type := (i : c.left) → S.FD.obj (Discrete.mk (c.hom i))
|
||
|
||
namespace Pure
|
||
|
||
variable {S : TensorSpecies} {c : OverColor S.C}
|
||
|
||
/-- The group action on a pure tensor. -/
|
||
def ρ (g : S.G) (p : Pure S c) : Pure S c := fun i ↦ (S.FD.obj (Discrete.mk (c.hom i))).ρ g (p i)
|
||
|
||
/-- The underlying tensor of a pure tensor. -/
|
||
def tprod (p : Pure S c) : S.F.obj c := PiTensorProduct.tprod S.k p
|
||
|
||
/-- The map `tprod` is equivariant with respect to the group action. -/
|
||
lemma tprod_equivariant (g : S.G) (p : Pure S c) : (ρ g p).tprod = (S.F.obj c).ρ g p.tprod := by
|
||
simp only [F_def, OverColor.lift, OverColor.lift.obj', LaxBraidedFunctor.of_toFunctor,
|
||
OverColor.lift.objObj', Functor.id_obj, Rep.coe_of, tprod, Rep.of_ρ, MonoidHom.coe_mk,
|
||
OneHom.coe_mk, PiTensorProduct.map_tprod]
|
||
rfl
|
||
|
||
end Pure
|
||
|
||
/-- A tensor is pure if it is `⨂[S.k] i, p i` for some `p : Pure c`. -/
|
||
def IsPure {c : OverColor S.C} (t : S.F.obj c) : Prop := ∃ p : Pure S c, t = p.tprod
|
||
|
||
/-- As long as we are dealing with tensors with at least one index, then the zero
|
||
tensor is pure. -/
|
||
lemma zero_isPure {c : OverColor S.C} [h : Nonempty c.left] : @IsPure S c 0 := by
|
||
refine ⟨fun i => 0, ?_⟩
|
||
simp only [Pure.tprod, Functor.id_obj]
|
||
change 0 = PiTensorProduct.tprodCoeff S.k 1 fun i => 0
|
||
symm
|
||
apply PiTensorProduct.zero_tprodCoeff' (1 : S.k)
|
||
rfl
|
||
exact (Classical.inhabited_of_nonempty h).default
|
||
|
||
@[simp]
|
||
lemma Pure.tprod_isPure {c : OverColor S.C} (p : Pure S c) : S.IsPure p.tprod := ⟨p, rfl⟩
|
||
|
||
@[simp]
|
||
lemma action_isPure_iff_isPure {c : OverColor S.C} {ψ : S.F.obj c} (g : S.G) :
|
||
S.IsPure ((S.F.obj c).ρ g ψ) ↔ S.IsPure ψ := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· obtain ⟨p, hp⟩ := h
|
||
have hp' := congrArg ((S.F.obj c).ρ g⁻¹) hp
|
||
simp only [Rep.ρ_inv_self_apply] at hp'
|
||
rw [← Pure.tprod_equivariant] at hp'
|
||
subst hp'
|
||
exact Pure.tprod_isPure S (Pure.ρ g⁻¹ p)
|
||
· obtain ⟨p, hp⟩ := h
|
||
subst hp
|
||
rw [← Pure.tprod_equivariant]
|
||
exact Pure.tprod_isPure S (Pure.ρ g p)
|
||
|
||
end TensorSpecies
|
||
|
||
end
|