162 lines
4.6 KiB
Text
162 lines
4.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Basic
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Geometry.Manifold.VectorBundle.Basic
|
||
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
||
import Mathlib.Geometry.Manifold.Instances.Real
|
||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||
import Mathlib.Geometry.Manifold.ContMDiff.Product
|
||
/-!
|
||
|
||
# The Higgs field
|
||
|
||
This file defines the basic properties for the Higgs field in the standard model.
|
||
|
||
## References
|
||
|
||
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||
|
||
-/
|
||
|
||
namespace StandardModel
|
||
noncomputable section
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
open SpaceTime
|
||
|
||
/-!
|
||
|
||
## The definition of the Higgs vector space.
|
||
|
||
In other words, the target space of the Higgs field.
|
||
-/
|
||
|
||
/-- The complex vector space in which the Higgs field takes values. -/
|
||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||
|
||
namespace HiggsVec
|
||
|
||
/-- The continuous linear map from the vector space `HiggsVec` to `(Fin 2 → ℂ)` achieved by
|
||
casting vectors. -/
|
||
def toFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where
|
||
toFun x := x
|
||
map_add' x y := by simp
|
||
map_smul' a x := by simp
|
||
|
||
/-- The map `toFin2ℂ` is smooth. -/
|
||
lemma smooth_toFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) toFin2ℂ :=
|
||
ContinuousLinearMap.smooth toFin2ℂ
|
||
|
||
/-- An orthonormal basis of `HiggsVec`. -/
|
||
def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||
|
||
end HiggsVec
|
||
|
||
/-!
|
||
|
||
## Definition of the Higgs Field
|
||
|
||
We also define the Higgs bundle.
|
||
-/
|
||
|
||
/-! TODO: Make `HiggsBundle` an associated bundle. -/
|
||
/-- The trivial vector bundle 𝓡² × ℂ². -/
|
||
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
||
|
||
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=
|
||
Bundle.Trivial.smoothVectorBundle HiggsVec 𝓘(ℝ, SpaceTime)
|
||
|
||
/-- A Higgs field is a smooth section of the Higgs bundle. -/
|
||
abbrev HiggsField : Type := SmoothSection SpaceTime.asSmoothManifold HiggsVec HiggsBundle
|
||
|
||
instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
||
exact Pi.normedAddCommGroup
|
||
|
||
/-- Given a vector in `HiggsVec` the constant Higgs field with value equal to that
|
||
section. -/
|
||
def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
||
toFun := fun _ ↦ φ
|
||
contMDiff_toFun := by
|
||
intro x
|
||
rw [Bundle.contMDiffAt_section]
|
||
exact smoothAt_const
|
||
|
||
namespace HiggsField
|
||
open HiggsVec
|
||
|
||
/-!
|
||
|
||
## Relation to `HiggsVec`
|
||
|
||
-/
|
||
|
||
/-- Given a `HiggsField`, the corresponding map from `SpaceTime` to `HiggsVec`. -/
|
||
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
|
||
|
||
lemma toHiggsVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, HiggsVec) φ.toHiggsVec := by
|
||
intro x0
|
||
have h1 := φ.contMDiff x0
|
||
rw [Bundle.contMDiffAt_section] at h1
|
||
have h2 :
|
||
(fun x => ((trivializationAt HiggsVec (Bundle.Trivial SpaceTime HiggsVec) x0)
|
||
{ proj := x, snd := φ x }).2) = φ := by
|
||
rfl
|
||
simp only [h2] at h1
|
||
exact h1
|
||
|
||
lemma toField_toHiggsVec_apply (φ : HiggsField) (x : SpaceTime) :
|
||
(φ.toHiggsVec x).toField x = φ x := rfl
|
||
|
||
lemma toFin2ℂ_comp_toHiggsVec (φ : HiggsField) :
|
||
toFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||
|
||
/-!
|
||
|
||
## Smoothness properties of components
|
||
|
||
-/
|
||
|
||
lemma toVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||
smooth_toFin2ℂ.comp φ.toHiggsVec_smooth
|
||
|
||
lemma apply_smooth (φ : HiggsField) :
|
||
∀ i, Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℂ) (fun (x : SpaceTime) => (φ x i)) :=
|
||
(smooth_pi_space).mp (φ.toVec_smooth)
|
||
|
||
lemma apply_re_smooth (φ : HiggsField) (i : Fin 2) :
|
||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
|
||
|
||
lemma apply_im_smooth (φ : HiggsField) (i : Fin 2) :
|
||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
||
|
||
/-!
|
||
|
||
## Constant Higgs fields
|
||
|
||
-/
|
||
|
||
/-- A Higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
|
||
|
||
lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := by
|
||
intro x _
|
||
simp [HiggsVec.toField]
|
||
|
||
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
|
||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||
|
||
end HiggsField
|
||
|
||
end
|
||
end StandardModel
|