564 lines
25 KiB
Text
564 lines
25 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.WickContraction.Join
|
||
/-!
|
||
|
||
# Time contractions
|
||
|
||
-/
|
||
|
||
open FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
namespace WickContraction
|
||
variable {n : ℕ} (c : WickContraction n)
|
||
open HepLean.List
|
||
open FieldOpAlgebra
|
||
|
||
/-- The condition on a Wick contraction which is true iff and only if every contraction
|
||
is between two fields of equal time. -/
|
||
def EqTimeOnly {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : Prop :=
|
||
∀ (i j), {i, j} ∈ φsΛ.1 → timeOrderRel φs[i] φs[j]
|
||
noncomputable section
|
||
|
||
instance {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
Decidable (EqTimeOnly φsΛ) :=
|
||
inferInstanceAs (Decidable (∀ (i j), {i, j} ∈ φsΛ.1 → timeOrderRel φs[i] φs[j]))
|
||
|
||
namespace EqTimeOnly
|
||
variable {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
|
||
lemma timeOrderRel_of_eqTimeOnly_pair {i j : Fin φs.length} (h : {i, j} ∈ φsΛ.1)
|
||
(hc : EqTimeOnly φsΛ) :
|
||
timeOrderRel φs[i] φs[j] := by
|
||
have h' := hc
|
||
simp only [EqTimeOnly, ne_eq, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and] at h'
|
||
exact h' i j h
|
||
|
||
lemma timeOrderRel_both_of_eqTimeOnly {i j : Fin φs.length} (h : {i, j} ∈ φsΛ.1)
|
||
(hc : EqTimeOnly φsΛ) :
|
||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i] := by
|
||
apply And.intro
|
||
· exact timeOrderRel_of_eqTimeOnly_pair φsΛ h hc
|
||
· apply timeOrderRel_of_eqTimeOnly_pair φsΛ _ hc
|
||
rw [@Finset.pair_comm]
|
||
exact h
|
||
|
||
lemma eqTimeOnly_iff_forall_finset {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
φsΛ.EqTimeOnly ↔ ∀ (a : φsΛ.1),
|
||
timeOrderRel (φs[φsΛ.fstFieldOfContract a]) (φs[φsΛ.sndFieldOfContract a])
|
||
∧ timeOrderRel (φs[φsΛ.sndFieldOfContract a]) (φs[φsΛ.fstFieldOfContract a]) := by
|
||
apply Iff.intro
|
||
· intro h a
|
||
apply timeOrderRel_both_of_eqTimeOnly φsΛ _ h
|
||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||
simp
|
||
· intro h
|
||
simp only [EqTimeOnly, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and]
|
||
intro i j h1
|
||
have h' := h ⟨{i, j}, h1⟩
|
||
by_cases hij: i < j
|
||
· have hi : φsΛ.fstFieldOfContract ⟨{i, j}, h1⟩ = i := by
|
||
apply eq_fstFieldOfContract_of_mem _ _ i j
|
||
· simp
|
||
· simp
|
||
· exact hij
|
||
have hj : φsΛ.sndFieldOfContract ⟨{i, j}, h1⟩ = j := by
|
||
apply eq_sndFieldOfContract_of_mem _ _ i j
|
||
· simp
|
||
· simp
|
||
· exact hij
|
||
simp_all
|
||
· have hij : i ≠ j := by
|
||
by_contra hij
|
||
subst hij
|
||
have h2 := φsΛ.2.1 {i, i} h1
|
||
simp at h2
|
||
have hj : φsΛ.fstFieldOfContract ⟨{i, j}, h1⟩ = j := by
|
||
apply eq_fstFieldOfContract_of_mem _ _ j i
|
||
· simp
|
||
· simp
|
||
· omega
|
||
have hi : φsΛ.sndFieldOfContract ⟨{i, j}, h1⟩ = i := by
|
||
apply eq_sndFieldOfContract_of_mem _ _ j i
|
||
· simp
|
||
· simp
|
||
· omega
|
||
simp_all
|
||
|
||
@[simp]
|
||
lemma empty_mem {φs : List 𝓕.FieldOp} : empty (n := φs.length).EqTimeOnly := by
|
||
rw [eqTimeOnly_iff_forall_finset]
|
||
simp [empty]
|
||
|
||
/-- Let `φs` be a list of `𝓕.FieldOp` and `φsΛ` a `WickContraction` of `φs` within
|
||
which every contraction involves two `𝓕.FieldOp`s that have the same time, then
|
||
`φsΛ.staticContract = φsΛ.timeContract`. -/
|
||
lemma staticContract_eq_timeContract_of_eqTimeOnly (h : φsΛ.EqTimeOnly) :
|
||
φsΛ.staticContract = φsΛ.timeContract := by
|
||
simp only [staticContract, timeContract]
|
||
apply congrArg
|
||
funext a
|
||
ext
|
||
simp only [List.get_eq_getElem]
|
||
rw [timeContract_of_timeOrderRel]
|
||
apply timeOrderRel_of_eqTimeOnly_pair φsΛ
|
||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||
exact a.2
|
||
exact h
|
||
|
||
lemma eqTimeOnly_congr {φs φs' : List 𝓕.FieldOp} (h : φs = φs') (φsΛ : WickContraction φs.length) :
|
||
(congr (by simp [h]) φsΛ).EqTimeOnly (φs := φs') ↔ φsΛ.EqTimeOnly := by
|
||
subst h
|
||
simp
|
||
|
||
lemma quotContraction_eqTimeOnly {φs : List 𝓕.FieldOp} {φsΛ : WickContraction φs.length}
|
||
(h : φsΛ.EqTimeOnly) (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1) :
|
||
(φsΛ.quotContraction S ha).EqTimeOnly := by
|
||
rw [eqTimeOnly_iff_forall_finset]
|
||
intro a
|
||
simp only [Fin.getElem_fin]
|
||
erw [subContraction_uncontractedList_get]
|
||
erw [subContraction_uncontractedList_get]
|
||
simp only [quotContraction_fstFieldOfContract_uncontractedListEmd, Fin.getElem_fin,
|
||
quotContraction_sndFieldOfContract_uncontractedListEmd]
|
||
rw [eqTimeOnly_iff_forall_finset] at h
|
||
apply h
|
||
|
||
lemma exists_join_singleton_of_card_ge_zero {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(h : 0 < φsΛ.1.card) (h1 : φsΛ.EqTimeOnly) :
|
||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||
φsΛ = join (singleton h) φsucΛ ∧ (timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i])
|
||
∧ φsucΛ.EqTimeOnly ∧ φsucΛ.1.card + 1 = φsΛ.1.card := by
|
||
obtain ⟨a, ha⟩ := exists_contraction_pair_of_card_ge_zero φsΛ h
|
||
use φsΛ.fstFieldOfContract ⟨a, ha⟩
|
||
use φsΛ.sndFieldOfContract ⟨a, ha⟩
|
||
use φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩
|
||
let φsucΛ :
|
||
WickContraction [singleton (φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩)]ᵘᶜ.length :=
|
||
congr (by simp [← subContraction_singleton_eq_singleton])
|
||
(φsΛ.quotContraction {a} (by simpa using ha))
|
||
use φsucΛ
|
||
simp only [Fin.getElem_fin]
|
||
apply And.intro
|
||
· have h1 := join_congr (subContraction_singleton_eq_singleton _ ⟨a, ha⟩).symm (φsucΛ := φsucΛ)
|
||
simp only [id_eq, eq_mpr_eq_cast, h1, congr_trans_apply, congr_refl, φsucΛ]
|
||
rw [join_sub_quot]
|
||
· apply And.intro
|
||
· apply timeOrderRel_both_of_eqTimeOnly φsΛ _ h1
|
||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||
simp [ha]
|
||
apply And.intro
|
||
· simp only [id_eq, eq_mpr_eq_cast, φsucΛ]
|
||
rw [eqTimeOnly_congr (φs := [(φsΛ.subContraction {a} (by simpa using ha))]ᵘᶜ)]
|
||
simp only [id_eq, eq_mpr_eq_cast]
|
||
exact quotContraction_eqTimeOnly h1 _ _
|
||
rw [← subContraction_singleton_eq_singleton]
|
||
· simp only [id_eq, eq_mpr_eq_cast, card_congr, φsucΛ]
|
||
have h1 := subContraction_card_plus_quotContraction_card_eq _ {a} (by simpa using ha)
|
||
simp only [subContraction, Finset.card_singleton, id_eq, eq_mpr_eq_cast] at h1
|
||
omega
|
||
|
||
lemma timeOrder_timeContract_mul_of_eqTimeOnly_mid_induction {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length)
|
||
(hl : φsΛ.EqTimeOnly) (a b: 𝓕.FieldOpAlgebra) : (n : ℕ) → (hn : φsΛ.1.card = n) →
|
||
𝓣(a * φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(a * b)
|
||
| 0, hn => by
|
||
rw [@card_zero_iff_empty] at hn
|
||
subst hn
|
||
simp
|
||
| Nat.succ n, hn => by
|
||
obtain ⟨i, j, hij, φsucΛ, rfl, h2, h3, h4⟩ :=
|
||
exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hl
|
||
rw [join_timeContract]
|
||
rw [singleton_timeContract]
|
||
simp only [Fin.getElem_fin, MulMemClass.coe_mul]
|
||
trans timeOrder (a * FieldOpAlgebra.timeContract φs[↑i] φs[↑j] * (φsucΛ.timeContract.1 * b))
|
||
simp only [mul_assoc, Fin.getElem_fin]
|
||
rw [timeOrder_timeContract_eq_time_mid]
|
||
have ih := timeOrder_timeContract_mul_of_eqTimeOnly_mid_induction φsucΛ h3 a b n (by omega)
|
||
rw [← mul_assoc, ih]
|
||
simp only [Fin.getElem_fin, mul_assoc]
|
||
simp_all only [Nat.succ_eq_add_one, Fin.getElem_fin, add_left_inj]
|
||
simp_all
|
||
|
||
lemma timeOrder_timeContract_mul_of_eqTimeOnly_mid {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length)
|
||
(hl : φsΛ.EqTimeOnly) (a b : 𝓕.FieldOpAlgebra) :
|
||
𝓣(a * φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(a * b) := by
|
||
exact timeOrder_timeContract_mul_of_eqTimeOnly_mid_induction φsΛ hl a b φsΛ.1.card rfl
|
||
|
||
/-- Let `φs` be a list of `𝓕.FieldOp`, `φsΛ` a `WickContraction` of `φs` within
|
||
which every contraction involves two `𝓕.FieldOp`s that have the same time and
|
||
`b` a general element in `𝓕.FieldOpAlgebra`. Then
|
||
`𝓣(φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(b)`.
|
||
|
||
This follows from properties of orderings and the ideal defining `𝓕.FieldOpAlgebra`. -/
|
||
lemma timeOrder_timeContract_mul_of_eqTimeOnly_left {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length)
|
||
(hl : φsΛ.EqTimeOnly) (b : 𝓕.FieldOpAlgebra) :
|
||
𝓣(φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(b) := by
|
||
trans 𝓣(1 * φsΛ.timeContract.1 * b)
|
||
simp only [one_mul]
|
||
rw [timeOrder_timeContract_mul_of_eqTimeOnly_mid φsΛ hl]
|
||
simp
|
||
|
||
lemma exists_join_singleton_of_not_eqTimeOnly {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length) (h1 : ¬ φsΛ.EqTimeOnly) :
|
||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||
φsΛ = join (singleton h) φsucΛ ∧ (¬ timeOrderRel φs[i] φs[j] ∨ ¬ timeOrderRel φs[j] φs[i]) := by
|
||
rw [eqTimeOnly_iff_forall_finset] at h1
|
||
simp only [Fin.getElem_fin, Subtype.forall, not_forall, not_and] at h1
|
||
obtain ⟨a, ha, hr⟩ := h1
|
||
use φsΛ.fstFieldOfContract ⟨a, ha⟩
|
||
use φsΛ.sndFieldOfContract ⟨a, ha⟩
|
||
use φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩
|
||
let φsucΛ :
|
||
WickContraction [singleton (φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩)]ᵘᶜ.length :=
|
||
congr (by simp [← subContraction_singleton_eq_singleton])
|
||
(φsΛ.quotContraction {a} (by simpa using ha))
|
||
use φsucΛ
|
||
simp only [Fin.getElem_fin]
|
||
apply And.intro
|
||
· have h1 := join_congr (subContraction_singleton_eq_singleton _ ⟨a, ha⟩).symm (φsucΛ := φsucΛ)
|
||
simp only [id_eq, eq_mpr_eq_cast, h1, congr_trans_apply, congr_refl, φsucΛ]
|
||
rw [join_sub_quot]
|
||
· by_cases h1 : timeOrderRel φs[↑(φsΛ.fstFieldOfContract ⟨a, ha⟩)]
|
||
φs[↑(φsΛ.sndFieldOfContract ⟨a, ha⟩)]
|
||
· simp_all [h1]
|
||
· simp_all [h1]
|
||
|
||
lemma timeOrder_timeContract_of_not_eqTimeOnly {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length)
|
||
(hl : ¬ φsΛ.EqTimeOnly) : 𝓣(φsΛ.timeContract.1) = 0 := by
|
||
obtain ⟨i, j, hij, φsucΛ, rfl, hr⟩ := exists_join_singleton_of_not_eqTimeOnly φsΛ hl
|
||
rw [join_timeContract]
|
||
rw [singleton_timeContract]
|
||
simp only [Fin.getElem_fin, MulMemClass.coe_mul]
|
||
rw [timeOrder_timeOrder_left]
|
||
rw [timeOrder_timeContract_neq_time]
|
||
simp only [zero_mul, map_zero]
|
||
simp_all only [Fin.getElem_fin, not_and]
|
||
intro h
|
||
simp_all
|
||
|
||
/-- Let `φs` be a list of `𝓕.FieldOp` and `φsΛ` a `WickContraction` with
|
||
at least one contraction between `𝓕.FieldOp` that do not have the same time. Then
|
||
`𝓣(φsΛ.staticContract.1) = 0`. -/
|
||
lemma timeOrder_staticContract_of_not_mem {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(hl : ¬ φsΛ.EqTimeOnly) : 𝓣(φsΛ.staticContract.1) = 0 := by
|
||
obtain ⟨i, j, hij, φsucΛ, rfl, hr⟩ := exists_join_singleton_of_not_eqTimeOnly φsΛ hl
|
||
rw [join_staticContract]
|
||
simp only [MulMemClass.coe_mul]
|
||
rw [singleton_staticContract]
|
||
rw [timeOrder_timeOrder_left]
|
||
rw [timeOrder_superCommute_anPart_ofFieldOp_neq_time]
|
||
simp only [zero_mul, map_zero]
|
||
intro h
|
||
simp_all
|
||
|
||
end EqTimeOnly
|
||
|
||
/-- The condition on a Wick contraction which is true if it has at least one contraction
|
||
which is between two equal time fields. -/
|
||
def HaveEqTime {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : Prop :=
|
||
∃ (i j : Fin φs.length) (h : {i, j} ∈ φsΛ.1),
|
||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i]
|
||
|
||
noncomputable instance {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
Decidable (HaveEqTime φsΛ) :=
|
||
inferInstanceAs (Decidable (∃ (i j : Fin φs.length)
|
||
(h : ({i, j} : Finset (Fin φs.length)) ∈ φsΛ.1),
|
||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i]))
|
||
|
||
lemma haveEqTime_iff_finset {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
HaveEqTime φsΛ ↔ ∃ (a : Finset (Fin φs.length)) (h : a ∈ φsΛ.1),
|
||
timeOrderRel φs[φsΛ.fstFieldOfContract ⟨a, h⟩] φs[φsΛ.sndFieldOfContract ⟨a, h⟩]
|
||
∧ timeOrderRel φs[φsΛ.sndFieldOfContract ⟨a, h⟩] φs[φsΛ.fstFieldOfContract ⟨a, h⟩] := by
|
||
simp only [HaveEqTime, Fin.getElem_fin, exists_and_left, exists_prop]
|
||
apply Iff.intro
|
||
· intro h
|
||
obtain ⟨i, j, hij, h1, h2⟩ := h
|
||
use {i, j}, h1
|
||
by_cases hij : i < j
|
||
· have h1n := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ i j (by simp) (by simp) hij
|
||
have h2n := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ i j (by simp) (by simp) hij
|
||
simp only [h1n, h2n]
|
||
simp_all only [forall_true_left, true_and]
|
||
· have hineqj : i ≠ j := by
|
||
by_contra hineqj
|
||
subst hineqj
|
||
have h2 := φsΛ.2.1 {i, i} h1
|
||
simp_all
|
||
have hji : j < i := by omega
|
||
have h1n := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ j i (by simp) (by simp) hji
|
||
have h2n := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ j i (by simp) (by simp) hji
|
||
simp only [h1n, h2n]
|
||
simp_all
|
||
· intro h
|
||
obtain ⟨a, h1, h2, h3⟩ := h
|
||
use φsΛ.fstFieldOfContract ⟨a, h1⟩
|
||
use φsΛ.sndFieldOfContract ⟨a, h1⟩
|
||
simp_all only [and_true, true_and]
|
||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||
exact h1
|
||
|
||
@[simp]
|
||
lemma empty_not_haveEqTime {φs : List 𝓕.FieldOp} :
|
||
¬ HaveEqTime (empty : WickContraction φs.length) := by
|
||
rw [haveEqTime_iff_finset]
|
||
simp [empty]
|
||
|
||
/-- Given a Wick contraction the subset of contracted pairs between equal time fields. -/
|
||
def eqTimeContractSet {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
Finset (Finset (Fin φs.length)) :=
|
||
Finset.univ.filter (fun a =>
|
||
a ∈ φsΛ.1 ∧ ∀ (h : a ∈ φsΛ.1),
|
||
timeOrderRel φs[φsΛ.fstFieldOfContract ⟨a, h⟩] φs[φsΛ.sndFieldOfContract ⟨a, h⟩]
|
||
∧ timeOrderRel φs[φsΛ.sndFieldOfContract ⟨a, h⟩] φs[φsΛ.fstFieldOfContract ⟨a, h⟩])
|
||
|
||
lemma eqTimeContractSet_subset {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) :
|
||
eqTimeContractSet φsΛ ⊆ φsΛ.1 := by
|
||
simp only [eqTimeContractSet, Fin.getElem_fin]
|
||
intro a
|
||
simp only [Finset.mem_filter, Finset.mem_univ, true_and, and_imp]
|
||
intro h _
|
||
exact h
|
||
|
||
lemma mem_of_mem_eqTimeContractSet{φs : List 𝓕.FieldOp} {φsΛ : WickContraction φs.length}
|
||
{a : Finset (Fin φs.length)} (h : a ∈ eqTimeContractSet φsΛ) : a ∈ φsΛ.1 := by
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and] at h
|
||
exact h.1
|
||
|
||
lemma join_eqTimeContractSet {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||
eqTimeContractSet (join φsΛ φsucΛ) = φsΛ.eqTimeContractSet ∪
|
||
φsucΛ.eqTimeContractSet.map (Finset.mapEmbedding uncontractedListEmd).toEmbedding := by
|
||
ext a
|
||
apply Iff.intro
|
||
· intro h
|
||
have hmem := mem_of_mem_eqTimeContractSet h
|
||
have ht := joinLiftLeft_or_joinLiftRight_of_mem_join (φsucΛ := φsucΛ) _ hmem
|
||
rcases ht with ht | ht
|
||
· obtain ⟨b, rfl⟩ := ht
|
||
simp only [Finset.le_eq_subset, Finset.mem_union, Finset.mem_map,
|
||
RelEmbedding.coe_toEmbedding]
|
||
left
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
apply And.intro (by simp [joinLiftLeft])
|
||
intro h'
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
Finset.coe_mem, Subtype.coe_eta, join_fstFieldOfContract_joinLiftLeft,
|
||
join_sndFieldOfContract_joinLift, forall_true_left, true_and] at h
|
||
exact h
|
||
· obtain ⟨b, rfl⟩ := ht
|
||
simp only [Finset.le_eq_subset, Finset.mem_union, Finset.mem_map,
|
||
RelEmbedding.coe_toEmbedding]
|
||
right
|
||
use b
|
||
rw [Finset.mapEmbedding_apply]
|
||
simp only [joinLiftRight, and_true]
|
||
simpa [eqTimeContractSet] using h
|
||
· intro h
|
||
simp only [Finset.le_eq_subset, Finset.mem_union, Finset.mem_map,
|
||
RelEmbedding.coe_toEmbedding] at h
|
||
rcases h with h | h
|
||
· simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and] at h
|
||
apply And.intro
|
||
· simp [join, h.1]
|
||
· intro h'
|
||
have h2 := h.2 h.1
|
||
exact h2
|
||
· simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and] at h
|
||
obtain ⟨b, h1, h2, rfl⟩ := h
|
||
apply And.intro
|
||
· simp [join, h1]
|
||
· intro h'
|
||
have h2 := h1.2 h1.1
|
||
have hj : ⟨(Finset.mapEmbedding uncontractedListEmd) b, h'⟩
|
||
= joinLiftRight ⟨b, h1.1⟩ := by rfl
|
||
simp only [hj, join_fstFieldOfContract_joinLiftRight, getElem_uncontractedListEmd,
|
||
join_sndFieldOfContract_joinLiftRight]
|
||
simpa using h2
|
||
|
||
lemma eqTimeContractSet_of_not_haveEqTime {φs : List 𝓕.FieldOp} {φsΛ : WickContraction φs.length}
|
||
(h : ¬ HaveEqTime φsΛ) : eqTimeContractSet φsΛ = ∅ := by
|
||
ext a
|
||
simp only [Finset.not_mem_empty, iff_false]
|
||
by_contra hn
|
||
rw [haveEqTime_iff_finset] at h
|
||
simp only [Fin.getElem_fin, not_exists, not_and] at h
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and] at hn
|
||
have h2 := hn.2 hn.1
|
||
simp_all
|
||
|
||
lemma eqTimeContractSet_of_mem_eqTimeOnly {φs : List 𝓕.FieldOp} {φsΛ : WickContraction φs.length}
|
||
(h : φsΛ.EqTimeOnly) : eqTimeContractSet φsΛ = φsΛ.1 := by
|
||
ext a
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and,
|
||
and_iff_left_iff_imp, imp_forall_iff_forall]
|
||
rw [EqTimeOnly.eqTimeOnly_iff_forall_finset] at h
|
||
exact fun h_1 => h ⟨a, h_1⟩
|
||
|
||
lemma subContraction_eqTimeContractSet_eqTimeOnly {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length) :
|
||
(φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ)).EqTimeOnly := by
|
||
rw [EqTimeOnly.eqTimeOnly_iff_forall_finset]
|
||
intro a
|
||
have ha2 := a.2
|
||
simp only [subContraction, eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and] at ha2
|
||
simp only [subContraction_fstFieldOfContract, Fin.getElem_fin, subContraction_sndFieldOfContract]
|
||
exact ha2.2 ha2.1
|
||
|
||
lemma pair_mem_eqTimeContractSet_iff {φs : List 𝓕.FieldOp} {i j : Fin φs.length}
|
||
(φsΛ : WickContraction φs.length) (h : {i, j} ∈ φsΛ.1) :
|
||
{i, j} ∈ φsΛ.eqTimeContractSet ↔ timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i] := by
|
||
simp only [eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
by_cases hij : i < j
|
||
· have h1 := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ i j (by simp) (by simp) hij
|
||
have h2 := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ i j (by simp) (by simp) hij
|
||
simp only [h1, h2]
|
||
simp_all only [forall_true_left, true_and]
|
||
· have hineqj : i ≠ j := by
|
||
by_contra hineqj
|
||
subst hineqj
|
||
have h2 := φsΛ.2.1 {i, i} h
|
||
simp_all
|
||
have hji : j < i := by omega
|
||
have h1 := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ j i (by simp) (by simp) hji
|
||
have h2 := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ j i (by simp) (by simp) hji
|
||
simp only [h1, h2]
|
||
simp_all only [not_lt, ne_eq, forall_true_left, true_and]
|
||
apply Iff.intro
|
||
· intro a
|
||
simp_all only [and_self]
|
||
· intro a
|
||
simp_all only [and_self]
|
||
|
||
lemma subContraction_eqTimeContractSet_not_empty_of_haveEqTime
|
||
{φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (h : HaveEqTime φsΛ) :
|
||
φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ) ≠ empty := by
|
||
simp only [ne_eq]
|
||
erw [Subtype.eq_iff]
|
||
simp only [subContraction, empty]
|
||
rw [Finset.eq_empty_iff_forall_not_mem]
|
||
simp only [HaveEqTime, Fin.getElem_fin, exists_and_left, exists_prop] at h
|
||
obtain ⟨i, j, hij, h1, h2⟩ := h
|
||
simp only [not_forall, Decidable.not_not]
|
||
use {i, j}
|
||
rw [pair_mem_eqTimeContractSet_iff]
|
||
simp_all only [Fin.getElem_fin, and_self]
|
||
exact h1
|
||
|
||
lemma quotContraction_eqTimeContractSet_not_haveEqTime {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length) :
|
||
¬ HaveEqTime (φsΛ.quotContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ)) := by
|
||
rw [haveEqTime_iff_finset]
|
||
simp only [Fin.getElem_fin, not_exists, not_and]
|
||
intro a ha
|
||
erw [subContraction_uncontractedList_get]
|
||
erw [subContraction_uncontractedList_get]
|
||
simp only [quotContraction_fstFieldOfContract_uncontractedListEmd, Fin.getElem_fin,
|
||
quotContraction_sndFieldOfContract_uncontractedListEmd]
|
||
simp only [quotContraction, Finset.mem_filter, Finset.mem_univ, true_and] at ha
|
||
have hn' : Finset.map uncontractedListEmd a ∉
|
||
(φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ)).1 := by
|
||
exact uncontractedListEmd_finset_not_mem a
|
||
simp only [subContraction, eqTimeContractSet, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and, not_and, not_forall] at hn'
|
||
have hn'' := hn' ha
|
||
obtain ⟨h, h1⟩ := hn''
|
||
simp_all
|
||
|
||
lemma join_haveEqTime_of_eqTimeOnly_nonEmpty {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(h1 : φsΛ.EqTimeOnly) (h2 : φsΛ ≠ empty)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||
HaveEqTime (join φsΛ φsucΛ) := by
|
||
simp only [HaveEqTime, Fin.getElem_fin, join, Finset.le_eq_subset, Finset.mem_union,
|
||
Finset.mem_map, RelEmbedding.coe_toEmbedding, exists_and_left, exists_prop]
|
||
simp only [EqTimeOnly, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||
true_and] at h1
|
||
obtain ⟨i, j, h⟩ := exists_pair_of_not_eq_empty _ h2
|
||
use i, j
|
||
simp_all only [ne_eq, true_or, true_and]
|
||
apply h1 j i
|
||
rw [Finset.pair_comm]
|
||
exact h
|
||
|
||
lemma hasEqTimeEquiv_ext_sigma {φs : List 𝓕.FieldOp} {x1 x2 :
|
||
Σ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly ∧ φsΛ ≠ empty}),
|
||
{φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ}}
|
||
(h1 : x1.1.1 = x2.1.1) (h2 : x1.2.1 = congr (by simp [h1]) x2.2.1) : x1 = x2 := by
|
||
match x1, x2 with
|
||
| ⟨⟨a1, b1⟩, ⟨c1, d1⟩⟩, ⟨⟨a2, b2⟩, ⟨c2, d2⟩⟩ =>
|
||
simp only at h1
|
||
subst h1
|
||
simp only [ne_eq, congr_refl] at h2
|
||
simp [h2]
|
||
|
||
/-- The equivalence which separates a Wick contraction which has an equal time contraction
|
||
into a non-empty contraction only between equal-time fields and a Wick contraction which
|
||
does not have equal time contractions. -/
|
||
def hasEqTimeEquiv (φs : List 𝓕.FieldOp) :
|
||
{φsΛ : WickContraction φs.length // HaveEqTime φsΛ} ≃
|
||
Σ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly ∧ φsΛ ≠ empty}),
|
||
{φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ} where
|
||
toFun φsΛ := ⟨⟨φsΛ.1.subContraction (eqTimeContractSet φsΛ.1) (eqTimeContractSet_subset φsΛ.1),
|
||
subContraction_eqTimeContractSet_eqTimeOnly φsΛ.1,
|
||
subContraction_eqTimeContractSet_not_empty_of_haveEqTime φsΛ.1 φsΛ.2⟩,
|
||
⟨φsΛ.1.quotContraction (eqTimeContractSet φsΛ.1) (eqTimeContractSet_subset φsΛ.1),
|
||
quotContraction_eqTimeContractSet_not_haveEqTime φsΛ.1⟩⟩
|
||
invFun φsΛ := ⟨join φsΛ.1.1 φsΛ.2.1,
|
||
join_haveEqTime_of_eqTimeOnly_nonEmpty φsΛ.1.1 φsΛ.1.2.1 φsΛ.1.2.2 φsΛ.2⟩
|
||
left_inv φsΛ := by
|
||
match φsΛ with
|
||
| ⟨φsΛ, h1, h2⟩ =>
|
||
simp only [ne_eq, Fin.getElem_fin, Subtype.mk.injEq]
|
||
exact join_sub_quot φsΛ φsΛ.eqTimeContractSet (eqTimeContractSet_subset φsΛ)
|
||
right_inv φsΛ' := by
|
||
match φsΛ' with
|
||
| ⟨⟨φsΛ, h1⟩, ⟨φsucΛ, h2⟩⟩ =>
|
||
have hs : subContraction (φsΛ.join φsucΛ).eqTimeContractSet
|
||
(eqTimeContractSet_subset (φsΛ.join φsucΛ)) = φsΛ := by
|
||
apply Subtype.ext
|
||
ext a
|
||
simp only [subContraction]
|
||
rw [join_eqTimeContractSet]
|
||
rw [eqTimeContractSet_of_not_haveEqTime h2]
|
||
simp only [Finset.le_eq_subset, ne_eq, Finset.map_empty, Finset.union_empty]
|
||
rw [eqTimeContractSet_of_mem_eqTimeOnly h1.1]
|
||
refine hasEqTimeEquiv_ext_sigma ?_ ?_
|
||
· simp only [ne_eq]
|
||
exact hs
|
||
· simp only [ne_eq]
|
||
apply Subtype.ext
|
||
ext a
|
||
simp only [quotContraction, Finset.mem_filter, Finset.mem_univ, true_and]
|
||
rw [mem_congr_iff]
|
||
rw [mem_join_right_iff]
|
||
simp only [ne_eq]
|
||
rw [uncontractedListEmd_congr hs]
|
||
rw [Finset.map_map]
|
||
|
||
lemma sum_haveEqTime (φs : List 𝓕.FieldOp)
|
||
(f : WickContraction φs.length → M) [AddCommMonoid M]:
|
||
∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}), f φsΛ =
|
||
∑ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ.EqTimeOnly ∧ φsΛ ≠ empty}),
|
||
∑ (φssucΛ : {φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ}),
|
||
f (join φsΛ.1 φssucΛ.1) := by
|
||
rw [← (hasEqTimeEquiv φs).symm.sum_comp]
|
||
erw [Finset.sum_sigma]
|
||
rfl
|
||
|
||
end
|
||
end WickContraction
|