834 lines
38 KiB
Text
834 lines
38 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import PhysLean.Mathematics.Fin
|
||
/-!
|
||
# List lemmas
|
||
|
||
-/
|
||
namespace PhysLean.List
|
||
|
||
open Fin
|
||
open PhysLean
|
||
variable {n : Nat}
|
||
|
||
lemma takeWile_eraseIdx {I : Type} (P : I → Prop) [DecidablePred P] :
|
||
(l : List I) → (i : ℕ) → (hi : ∀ (i j : Fin l.length), i < j → P (l.get j) → P (l.get i)) →
|
||
List.takeWhile P (List.eraseIdx l i) = (List.takeWhile P l).eraseIdx i
|
||
| [], _, h => by
|
||
rfl
|
||
| a :: [], 0, h => by
|
||
simp only [List.takeWhile, List.eraseIdx_zero, List.nil_eq]
|
||
split
|
||
· rfl
|
||
· rfl
|
||
| a :: [], Nat.succ n, h => by
|
||
simp only [Nat.succ_eq_add_one, List.eraseIdx_cons_succ, List.eraseIdx_nil]
|
||
rw [List.eraseIdx_of_length_le]
|
||
have h1 : (List.takeWhile P [a]).length ≤ [a].length :=
|
||
List.Sublist.length_le (List.takeWhile_sublist _)
|
||
simp only [List.length_singleton] at h1
|
||
omega
|
||
| a :: b :: l, 0, h => by
|
||
simp only [List.takeWhile, List.eraseIdx_zero]
|
||
by_cases hPb : P b
|
||
· have hPa : P a := by
|
||
simpa using h ⟨0, by simp⟩ ⟨1, by simp⟩ (by simp [Fin.lt_def]) (by simpa using hPb)
|
||
simp [hPb, hPa]
|
||
· simp only [hPb, decide_false, List.nil_eq]
|
||
simp_all only [List.length_cons, List.get_eq_getElem, List.tail_cons, decide_false,
|
||
Bool.false_eq_true, not_false_eq_true, List.takeWhile_cons_of_neg, List.nil_eq]
|
||
split
|
||
· rfl
|
||
· rfl
|
||
| a :: b :: l, Nat.succ n, h => by
|
||
simp only [Nat.succ_eq_add_one, List.eraseIdx_cons_succ]
|
||
by_cases hPa : P a
|
||
· dsimp only [List.takeWhile]
|
||
simp only [hPa, decide_true, List.eraseIdx_cons_succ, List.cons.injEq, true_and]
|
||
rw [takeWile_eraseIdx]
|
||
· rfl
|
||
· intro i j hij hP
|
||
simpa using h (Fin.succ i) (Fin.succ j) (by simpa using hij) (by simpa using hP)
|
||
· simp [hPa]
|
||
|
||
lemma dropWile_eraseIdx {I : Type} (P : I → Prop) [DecidablePred P] :
|
||
(l : List I) → (i : ℕ) → (hi : ∀ (i j : Fin l.length), i < j → P (l.get j) → P (l.get i)) →
|
||
List.dropWhile P (List.eraseIdx l i) =
|
||
if (List.takeWhile P l).length ≤ i then
|
||
(List.dropWhile P l).eraseIdx (i - (List.takeWhile P l).length)
|
||
else (List.dropWhile P l)
|
||
| [], _, h => by
|
||
simp
|
||
| a :: [], 0, h => by
|
||
simp only [List.eraseIdx_zero, nonpos_iff_eq_zero, List.length_eq_zero_iff,
|
||
List.takeWhile_eq_nil_iff, List.length_singleton, zero_lt_one, Fin.zero_eta, Fin.isValue,
|
||
List.get_eq_getElem, Fin.val_eq_zero, List.getElem_cons_zero, decide_eq_true_eq, forall_const,
|
||
List.dropWhile, zero_le, Nat.sub_eq_zero_of_le, ite_not]
|
||
simp_all only [List.length_cons, List.length_nil, List.get_eq_getElem, Fin.val_eq_zero,
|
||
List.getElem_cons_zero, implies_true, List.tail_cons, List.dropWhile_nil, decide_true,
|
||
decide_false, ite_self]
|
||
| a :: [], Nat.succ n, h => by
|
||
simp only [List.dropWhile, List.eraseIdx_nil, List.takeWhile, Nat.succ_eq_add_one]
|
||
rw [List.eraseIdx_of_length_le]
|
||
simp_all only [List.length_singleton, List.get_eq_getElem, Fin.val_eq_zero,
|
||
List.getElem_cons_zero, implies_true, ite_self]
|
||
split
|
||
next x heq =>
|
||
simp_all only [decide_eq_true_eq, decide_true, List.dropWhile_cons_of_pos, List.dropWhile_nil,
|
||
List.length_singleton, le_add_iff_nonneg_left, zero_le, ↓reduceIte,
|
||
add_tsub_cancel_right, List.eraseIdx_nil]
|
||
next x heq =>
|
||
simp_all only [decide_eq_false_iff_not, decide_false, Bool.false_eq_true, not_false_eq_true,
|
||
List.dropWhile_cons_of_neg, List.length_nil, le_add_iff_nonneg_left,
|
||
zero_le, ↓reduceIte, tsub_zero, List.eraseIdx_cons_succ, List.eraseIdx_nil]
|
||
exact Nat.le_add_left [a].length n
|
||
| a :: b :: l, 0, h => by
|
||
simp only [List.dropWhile, List.takeWhile, nonpos_iff_eq_zero, List.length_eq_zero_iff, zero_le,
|
||
Nat.sub_eq_zero_of_le, List.eraseIdx_zero]
|
||
by_cases hPb : P b
|
||
· have hPa : P a := by
|
||
simpa using h ⟨0, by simp⟩ ⟨1, by simp⟩ (by simp [Fin.lt_def]) (by simpa using hPb)
|
||
simp [hPb, hPa]
|
||
· simp only [hPb, decide_false, nonpos_iff_eq_zero, List.length_eq_zero_iff]
|
||
simp_all only [List.length_cons, List.get_eq_getElem]
|
||
simp_rw [decide_false]
|
||
simp_all only [List.tail_cons, decide_false, Bool.false_eq_true, not_false_eq_true,
|
||
List.dropWhile_cons_of_neg, nonpos_iff_eq_zero, List.length_eq_zero_iff]
|
||
split
|
||
next x heq =>
|
||
simp_all only [decide_eq_true_eq, List.length_singleton, nonpos_iff_eq_zero, one_ne_zero,
|
||
↓reduceIte]
|
||
next x heq => simp_all only [decide_eq_false_iff_not, List.length_nil,
|
||
le_refl, ↓reduceIte, List.tail_cons]
|
||
| a :: b :: l, Nat.succ n, h => by
|
||
simp only [Nat.succ_eq_add_one, List.eraseIdx_cons_succ]
|
||
by_cases hPb : P b
|
||
· have hPa : P a := by
|
||
simpa using h ⟨0, by simp⟩ ⟨1, by simp⟩ (by simp [Fin.lt_def]) (by simpa using hPb)
|
||
simp only [List.dropWhile, hPa, decide_true, List.takeWhile, hPb, List.length_cons,
|
||
add_le_add_iff_right, Nat.reduceSubDiff]
|
||
rw [dropWile_eraseIdx]
|
||
simp_all only [List.length_cons, List.get_eq_getElem, decide_true, List.takeWhile_cons_of_pos,
|
||
List.dropWhile_cons_of_pos]
|
||
intro i j hij hP
|
||
simpa using h (Fin.succ i) (Fin.succ j) (by simpa using hij) (by simpa using hP)
|
||
· simp only [List.dropWhile, List.takeWhile, hPb, decide_false]
|
||
by_cases hPa : P a
|
||
· rw [dropWile_eraseIdx]
|
||
simp only [hPa, decide_true, hPb, decide_false, Bool.false_eq_true, not_false_eq_true,
|
||
List.takeWhile_cons_of_neg, List.length_nil, zero_le, ↓reduceIte, List.dropWhile,
|
||
tsub_zero, List.length_singleton, le_add_iff_nonneg_left, add_tsub_cancel_right]
|
||
intro i j hij hP
|
||
simpa using h (Fin.succ i) (Fin.succ j) (by simpa using hij) (by simpa using hP)
|
||
· simp [hPa]
|
||
|
||
lemma insertionSort_length {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (l : List I) :
|
||
(List.insertionSort le1 l).length = l.length :=
|
||
List.Perm.length_eq (List.perm_insertionSort le1 l)
|
||
|
||
/-- The position `r0` ends up in `r` on adding it via `List.orderedInsert _ r0 r`. -/
|
||
def orderedInsertPos {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I) (r0 : I) :
|
||
Fin (List.orderedInsert le1 r0 r).length :=
|
||
⟨(List.takeWhile (fun b => decide ¬ le1 r0 b) r).length, by
|
||
rw [List.orderedInsert_length]
|
||
have h1 : (List.takeWhile (fun b => decide ¬le1 r0 b) r).length ≤ r.length :=
|
||
List.Sublist.length_le (List.takeWhile_sublist fun b => decide ¬le1 r0 b)
|
||
omega⟩
|
||
|
||
lemma orderedInsertPos_lt_length {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) : orderedInsertPos le1 r r0 < (r0 :: r).length := by
|
||
simp only [orderedInsertPos, List.length_cons]
|
||
have h1 : (List.takeWhile (fun b => decide ¬le1 r0 b) r).length ≤ r.length :=
|
||
List.Sublist.length_le (List.takeWhile_sublist fun b => decide ¬le1 r0 b)
|
||
omega
|
||
|
||
@[simp]
|
||
lemma orderedInsert_get_orderedInsertPos {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
(List.orderedInsert le1 r0 r)[(orderedInsertPos le1 r r0).val] = r0 := by
|
||
simp [List.orderedInsert_eq_take_drop, orderedInsertPos, List.getElem_append]
|
||
|
||
@[simp]
|
||
lemma orderedInsert_eraseIdx_orderedInsertPos {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx ↑(orderedInsertPos le1 r r0) = r := by
|
||
simp only [List.orderedInsert_eq_take_drop]
|
||
rw [List.eraseIdx_append_of_length_le]
|
||
· simp [orderedInsertPos]
|
||
· rfl
|
||
|
||
lemma orderedInsertPos_cons {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 r1 : I) :
|
||
(orderedInsertPos le1 (r1 ::r) r0).val =
|
||
if le1 r0 r1 then ⟨0, by simp⟩ else (Fin.succ (orderedInsertPos le1 r r0)) := by
|
||
simp only [List.orderedInsert.eq_2, orderedInsertPos, List.takeWhile, decide_not, Fin.zero_eta,
|
||
Fin.succ_mk]
|
||
by_cases h : le1 r0 r1
|
||
· simp [h]
|
||
· simp [h]
|
||
|
||
lemma orderedInsertPos_sigma {I : Type} {f : I → Type}
|
||
(le1 : I → I → Prop) [DecidableRel le1] (l : List (Σ i, f i))
|
||
(k : I) (a : f k) :
|
||
(orderedInsertPos (fun (i j : Σ i, f i) => le1 i.1 j.1) l ⟨k, a⟩).1 =
|
||
(orderedInsertPos le1 (List.map (fun (i : Σ i, f i) => i.1) l) k).1 := by
|
||
simp only [orderedInsertPos, decide_not]
|
||
induction l with
|
||
| nil =>
|
||
simp
|
||
| cons a l ih =>
|
||
simp only [List.takeWhile]
|
||
obtain ⟨fst, snd⟩ := a
|
||
simp_all only
|
||
split
|
||
next x heq => simp_all
|
||
next x heq => simp_all
|
||
|
||
lemma orderedInsert_get_lt {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) (i : ℕ)
|
||
(hi : i < orderedInsertPos le1 r r0) :
|
||
(List.orderedInsert le1 r0 r)[i] = r.get ⟨i, by
|
||
simp only [orderedInsertPos] at hi
|
||
have h1 : (List.takeWhile (fun b => decide ¬le1 r0 b) r).length ≤ r.length :=
|
||
List.Sublist.length_le (List.takeWhile_sublist fun b => decide ¬le1 r0 b)
|
||
omega⟩ := by
|
||
simp only [orderedInsertPos, decide_not] at hi
|
||
simp only [List.orderedInsert_eq_take_drop, decide_not, List.get_eq_getElem]
|
||
rw [List.getElem_append]
|
||
simp only [hi, ↓reduceDIte]
|
||
rw [List.IsPrefix.getElem]
|
||
exact List.takeWhile_prefix fun b => !decide (le1 r0 b)
|
||
|
||
lemma orderedInsertPos_take_orderedInsert {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
(List.take (orderedInsertPos le1 r r0) (List.orderedInsert le1 r0 r)) =
|
||
List.takeWhile (fun b => decide ¬le1 r0 b) r := by
|
||
simp [orderedInsertPos, List.orderedInsert_eq_take_drop]
|
||
|
||
lemma orderedInsertPos_take_eq_orderedInsert {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
List.take (orderedInsertPos le1 r r0) r =
|
||
List.take (orderedInsertPos le1 r r0) (List.orderedInsert le1 r0 r) := by
|
||
refine List.ext_get ?_ ?_
|
||
· simp only [List.length_take, Fin.is_le', inf_of_le_left, inf_eq_left]
|
||
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le1 r r0)
|
||
· intro n h1 h2
|
||
simp only [List.get_eq_getElem, List.getElem_take]
|
||
rw [orderedInsert_get_lt le1 r r0 n]
|
||
rfl
|
||
simp only [List.length_take, lt_inf_iff] at h1
|
||
exact h1.1
|
||
|
||
lemma orderedInsertPos_drop_eq_orderedInsert {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
List.drop (orderedInsertPos le1 r r0) r =
|
||
List.drop (orderedInsertPos le1 r r0).succ (List.orderedInsert le1 r0 r) := by
|
||
conv_rhs => simp [orderedInsertPos, List.orderedInsert_eq_take_drop]
|
||
have hr : r = List.takeWhile (fun b => !decide (le1 r0 b)) r ++
|
||
List.dropWhile (fun b => !decide (le1 r0 b)) r := by
|
||
exact Eq.symm (List.takeWhile_append_dropWhile (fun b => !decide (le1 r0 b)) r)
|
||
conv_lhs =>
|
||
rhs
|
||
rw [hr]
|
||
rw [List.drop_append_eq_append_drop]
|
||
simp [orderedInsertPos]
|
||
|
||
lemma orderedInsertPos_take {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
List.take (orderedInsertPos le1 r r0) r = List.takeWhile (fun b => decide ¬le1 r0 b) r := by
|
||
rw [orderedInsertPos_take_eq_orderedInsert,orderedInsertPos_take_orderedInsert]
|
||
|
||
lemma orderedInsertPos_drop {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
List.drop (orderedInsertPos le1 r r0) r = List.dropWhile (fun b => decide ¬le1 r0 b) r := by
|
||
rw [orderedInsertPos_drop_eq_orderedInsert]
|
||
simp [orderedInsertPos, List.orderedInsert_eq_take_drop]
|
||
|
||
lemma orderedInsertPos_succ_take_orderedInsert {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
(List.take (orderedInsertPos le1 r r0).succ (List.orderedInsert le1 r0 r)) =
|
||
List.takeWhile (fun b => decide ¬le1 r0 b) r ++ [r0] := by
|
||
simp [orderedInsertPos, List.orderedInsert_eq_take_drop, List.take_append_eq_append_take]
|
||
|
||
lemma lt_orderedInsertPos_rel {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r0 : I) (r : List I) (n : Fin r.length)
|
||
(hn : n.val < (orderedInsertPos le1 r r0).val) : ¬ le1 r0 (r.get n) := by
|
||
have htake : r.get n ∈ List.take (orderedInsertPos le1 r r0) r := by
|
||
rw [@List.mem_take_iff_getElem]
|
||
use n
|
||
simp only [List.get_eq_getElem, lt_inf_iff, Fin.is_lt, and_true, exists_prop]
|
||
exact hn
|
||
rw [orderedInsertPos_take] at htake
|
||
simpa using List.mem_takeWhile_imp htake
|
||
|
||
lemma lt_orderedInsertPos_rel_fin {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r0 : I) (r : List I) (n : Fin (List.orderedInsert le1 r0 r).length)
|
||
(hn : n < (orderedInsertPos le1 r r0)) : ¬ le1 r0 ((List.orderedInsert le1 r0 r).get n) := by
|
||
have htake : (List.orderedInsert le1 r0 r).get n ∈ List.take (orderedInsertPos le1 r r0) r := by
|
||
rw [orderedInsertPos_take_eq_orderedInsert, List.mem_take_iff_getElem]
|
||
use n
|
||
simp only [List.get_eq_getElem, Fin.is_le', inf_of_le_left, Fin.val_fin_lt, exists_prop,
|
||
and_true]
|
||
exact hn
|
||
rw [orderedInsertPos_take] at htake
|
||
simpa using List.mem_takeWhile_imp htake
|
||
|
||
lemma gt_orderedInsertPos_rel {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
[IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) (hs : List.Sorted le1 r)
|
||
(n : Fin r.length)
|
||
(hn : ¬ n.val < (orderedInsertPos le1 r r0).val) : le1 r0 (r.get n) := by
|
||
have hrsSorted : List.Sorted le1 (List.orderedInsert le1 r0 r) :=
|
||
List.Sorted.orderedInsert r0 r hs
|
||
apply List.Sorted.rel_of_mem_take_of_mem_drop (k := (orderedInsertPos le1 r r0).succ) hrsSorted
|
||
· rw [orderedInsertPos_succ_take_orderedInsert]
|
||
simp
|
||
· rw [← orderedInsertPos_drop_eq_orderedInsert]
|
||
refine List.mem_drop_iff_getElem.mpr ?_
|
||
use n - (orderedInsertPos le1 r r0).val
|
||
have hn : ↑n - ↑(orderedInsertPos le1 r r0) + ↑(orderedInsertPos le1 r r0) < r.length := by
|
||
omega
|
||
use hn
|
||
congr
|
||
omega
|
||
|
||
lemma orderedInsert_eraseIdx_lt_orderedInsertPos {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) (i : ℕ)
|
||
(hi : i < orderedInsertPos le1 r r0)
|
||
(hr : ∀ (i j : Fin r.length), i < j → ¬le1 r0 (r.get j) → ¬le1 r0 (r.get i)) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx i = List.orderedInsert le1 r0 (r.eraseIdx i) := by
|
||
conv_lhs => simp only [List.orderedInsert_eq_take_drop]
|
||
rw [List.eraseIdx_append_of_lt_length]
|
||
· simp only [List.orderedInsert_eq_take_drop]
|
||
congr 1
|
||
· rw [takeWile_eraseIdx]
|
||
exact hr
|
||
· rw [dropWile_eraseIdx]
|
||
simp only [orderedInsertPos, decide_not] at hi
|
||
have hi' : ¬ (List.takeWhile (fun b => !decide (le1 r0 b)) r).length ≤ ↑i := by omega
|
||
simp only [decide_not, hi', ↓reduceIte]
|
||
exact fun i j a a_1 => hr i j a a_1
|
||
· exact hi
|
||
|
||
lemma orderedInsert_eraseIdx_orderedInsertPos_le {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) (i : ℕ)
|
||
(hi : orderedInsertPos le1 r r0 ≤ i)
|
||
(hr : ∀ (i j : Fin r.length), i < j → ¬le1 r0 (r.get j) → ¬le1 r0 (r.get i)) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx (Nat.succ i) =
|
||
List.orderedInsert le1 r0 (r.eraseIdx i) := by
|
||
conv_lhs => simp only [List.orderedInsert_eq_take_drop]
|
||
rw [List.eraseIdx_append_of_length_le]
|
||
· simp only [List.orderedInsert_eq_take_drop]
|
||
congr 1
|
||
· rw [takeWile_eraseIdx, List.eraseIdx_of_length_le]
|
||
simp only [orderedInsertPos, decide_not] at hi
|
||
simp only [decide_not]
|
||
omega
|
||
exact hr
|
||
· simp only [Nat.succ_eq_add_one]
|
||
have hn : (i + 1 - (List.takeWhile (fun b => (decide (¬ le1 r0 b))) r).length)
|
||
= (i - (List.takeWhile (fun b => decide (¬ le1 r0 b)) r).length) + 1 := by
|
||
simp only [orderedInsertPos] at hi
|
||
omega
|
||
rw [hn]
|
||
simp only [List.eraseIdx_cons_succ, List.cons.injEq, true_and]
|
||
rw [dropWile_eraseIdx, if_pos]
|
||
· rw [orderedInsertPos] at hi
|
||
omega
|
||
· exact hr
|
||
· simp only [orderedInsertPos] at hi
|
||
omega
|
||
|
||
/-- The equivalence between `Fin (r0 :: r).length` and `Fin (List.orderedInsert le1 r0 r).length`
|
||
according to where the elements map, i.e. `0` is taken to `orderedInsertPos le1 r r0`. -/
|
||
def orderedInsertEquiv {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I) (r0 : I) :
|
||
Fin (r0 :: r).length ≃ Fin (List.orderedInsert le1 r0 r).length := by
|
||
let e2 : Fin (List.orderedInsert le1 r0 r).length ≃ Fin (r0 :: r).length :=
|
||
(Fin.castOrderIso (List.orderedInsert_length le1 r r0)).toEquiv
|
||
let e3 : Fin (r0 :: r).length ≃ Fin 1 ⊕ Fin (r).length := finExtractOne 0
|
||
let e4 : Fin (r0 :: r).length ≃ Fin 1 ⊕ Fin (r).length :=
|
||
finExtractOne ⟨orderedInsertPos le1 r r0, orderedInsertPos_lt_length le1 r r0⟩
|
||
exact e3.trans (e4.symm.trans e2.symm)
|
||
|
||
lemma orderedInsertEquiv_zero {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) : orderedInsertEquiv le1 r r0 ⟨0, by simp⟩ = orderedInsertPos le1 r r0 := by
|
||
simp [orderedInsertEquiv]
|
||
|
||
lemma orderedInsertEquiv_succ {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) (n : ℕ) (hn : Nat.succ n < (r0 :: r).length) :
|
||
orderedInsertEquiv le1 r r0 ⟨Nat.succ n, hn⟩ =
|
||
Fin.cast (List.orderedInsert_length le1 r r0).symm
|
||
((Fin.succAbove ⟨(orderedInsertPos le1 r r0), orderedInsertPos_lt_length le1 r r0⟩)
|
||
⟨n, Nat.succ_lt_succ_iff.mp hn⟩) := by
|
||
simp only [List.length_cons, orderedInsertEquiv, Nat.succ_eq_add_one, OrderIso.toEquiv_symm,
|
||
Fin.symm_castOrderIso, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply]
|
||
match r with
|
||
| [] =>
|
||
simp
|
||
| r1 :: r =>
|
||
erw [finExtractOne_apply_neq]
|
||
simp only [List.orderedInsert.eq_2, List.length_cons, orderedInsertPos, decide_not,
|
||
Nat.succ_eq_add_one, finExtractOne_symm_inr_apply]
|
||
rfl
|
||
exact ne_of_beq_false rfl
|
||
|
||
lemma orderedInsertEquiv_fin_succ {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) (n : Fin r.length) :
|
||
orderedInsertEquiv le1 r r0 n.succ = Fin.cast (List.orderedInsert_length le1 r r0).symm
|
||
((Fin.succAbove ⟨(orderedInsertPos le1 r r0), orderedInsertPos_lt_length le1 r r0⟩)
|
||
⟨n, n.isLt⟩) := by
|
||
simp only [orderedInsertEquiv, Equiv.trans_apply]
|
||
match r with
|
||
| [] =>
|
||
simp
|
||
| r1 :: r =>
|
||
erw [finExtractOne_apply_neq]
|
||
simp only [List.orderedInsert.eq_2, List.length_cons, orderedInsertPos, decide_not,
|
||
Nat.succ_eq_add_one, finExtractOne_symm_inr_apply]
|
||
rfl
|
||
exact ne_of_beq_false rfl
|
||
|
||
lemma orderedInsertEquiv_monotone_fin_succ {I : Type}
|
||
(le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) (n m : Fin r.length)
|
||
(hx : orderedInsertEquiv le1 r r0 n.succ < orderedInsertEquiv le1 r r0 m.succ) :
|
||
n < m := by
|
||
rw [orderedInsertEquiv_fin_succ, orderedInsertEquiv_fin_succ, Fin.lt_def] at hx
|
||
simp only [Fin.eta, Fin.coe_cast, Fin.val_fin_lt] at hx
|
||
rw [Fin.succAbove_lt_succAbove_iff] at hx
|
||
exact hx
|
||
|
||
lemma orderedInsertEquiv_congr {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α)
|
||
(l l' : List α) (h : l = l') :
|
||
orderedInsertEquiv r l a = (Fin.castOrderIso (by simp [h])).toEquiv.trans
|
||
((orderedInsertEquiv r l' a).trans (Fin.castOrderIso (by simp [h])).toEquiv) := by
|
||
subst h
|
||
rfl
|
||
|
||
lemma get_eq_orderedInsertEquiv {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) :
|
||
(r0 :: r).get = (List.orderedInsert le1 r0 r).get ∘ (orderedInsertEquiv le1 r r0) := by
|
||
funext x
|
||
match x with
|
||
| ⟨0, h⟩ =>
|
||
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
|
||
List.getElem_cons_zero, Function.comp_apply]
|
||
erw [orderedInsertEquiv_zero]
|
||
simp
|
||
| ⟨Nat.succ n, h⟩ =>
|
||
simp only [List.length_cons, Nat.succ_eq_add_one, List.get_eq_getElem, List.getElem_cons_succ,
|
||
Function.comp_apply]
|
||
erw [orderedInsertEquiv_succ]
|
||
simp only [Fin.succAbove, Fin.castSucc_mk, Fin.mk_lt_mk, Fin.succ_mk, Fin.coe_cast]
|
||
by_cases hn : n < ↑(orderedInsertPos le1 r r0)
|
||
· simp [hn, orderedInsert_get_lt]
|
||
· simp only [hn, ↓reduceIte, List.orderedInsert_eq_take_drop, decide_not]
|
||
rw [List.getElem_append]
|
||
have hn' : ¬ n + 1 < (List.takeWhile (fun b => !decide (le1 r0 b)) r).length := by
|
||
simp only [orderedInsertPos, decide_not, not_lt] at hn
|
||
omega
|
||
simp only [hn', ↓reduceDIte]
|
||
have hnn : n + 1 - (List.takeWhile (fun b => !decide (le1 r0 b)) r).length =
|
||
(n - (List.takeWhile (fun b => !decide (le1 r0 b)) r).length) + 1 := by
|
||
simp only [orderedInsertPos, decide_not, not_lt] at hn
|
||
omega
|
||
simp only [hnn, List.getElem_cons_succ]
|
||
conv_rhs =>
|
||
rw [List.IsSuffix.getElem (List.dropWhile_suffix fun b => !decide (le1 r0 b))]
|
||
congr
|
||
have hr : r.length = (List.takeWhile (fun b => !decide (le1 r0 b)) r).length +
|
||
(List.dropWhile (fun b => !decide (le1 r0 b)) r).length := by
|
||
rw [← List.length_append]
|
||
congr
|
||
exact Eq.symm (List.takeWhile_append_dropWhile (fun b => !decide (le1 r0 b)) r)
|
||
simp only [hr, add_tsub_cancel_right]
|
||
omega
|
||
|
||
lemma orderedInsertEquiv_get {I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I)
|
||
(r0 : I) :
|
||
(r0 :: r).get ∘ (orderedInsertEquiv le1 r r0).symm = (List.orderedInsert le1 r0 r).get := by
|
||
rw [get_eq_orderedInsertEquiv le1]
|
||
funext x
|
||
simp
|
||
|
||
lemma orderedInsert_eraseIdx_orderedInsertEquiv_zero
|
||
{I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I) (r0 : I) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx (orderedInsertEquiv le1 r r0 ⟨0, by simp⟩) = r := by
|
||
simp [orderedInsertEquiv]
|
||
|
||
lemma orderedInsert_eraseIdx_orderedInsertEquiv_succ
|
||
{I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I) (r0 : I) (n : ℕ)
|
||
(hn : Nat.succ n < (r0 :: r).length)
|
||
(hr : ∀ (i j : Fin r.length), i < j → ¬le1 r0 (r.get j) → ¬le1 r0 (r.get i)) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx (orderedInsertEquiv le1 r r0 ⟨Nat.succ n, hn⟩) =
|
||
(List.orderedInsert le1 r0 (r.eraseIdx n)) := by
|
||
induction r with
|
||
| nil =>
|
||
simp at hn
|
||
| cons r1 r ih =>
|
||
rw [orderedInsertEquiv_succ]
|
||
simp only [List.length_cons, Fin.succAbove,
|
||
Fin.castSucc_mk, Fin.mk_lt_mk, Fin.succ_mk, Fin.coe_cast]
|
||
by_cases hn' : n < (orderedInsertPos le1 (r1 :: r) r0)
|
||
· simp only [hn', ↓reduceIte]
|
||
rw [orderedInsert_eraseIdx_lt_orderedInsertPos le1 (r1 :: r) r0 n hn' hr]
|
||
· simp only [hn', ↓reduceIte]
|
||
rw [orderedInsert_eraseIdx_orderedInsertPos_le le1 (r1 :: r) r0 n _ hr]
|
||
omega
|
||
|
||
lemma orderedInsert_eraseIdx_orderedInsertEquiv_fin_succ
|
||
{I : Type} (le1 : I → I → Prop) [DecidableRel le1] (r : List I) (r0 : I) (n : Fin r.length)
|
||
(hr : ∀ (i j : Fin r.length), i < j → ¬le1 r0 (r.get j) → ¬le1 r0 (r.get i)) :
|
||
(List.orderedInsert le1 r0 r).eraseIdx (orderedInsertEquiv le1 r r0 n.succ) =
|
||
(List.orderedInsert le1 r0 (r.eraseIdx n)) := by
|
||
have hn : n.succ = ⟨n.val + 1, by omega⟩ := by
|
||
rw [Fin.ext_iff]
|
||
rfl
|
||
rw [hn]
|
||
exact orderedInsert_eraseIdx_orderedInsertEquiv_succ le1 r r0 n.val _ hr
|
||
|
||
lemma orderedInsertEquiv_sigma {I : Type} {f : I → Type}
|
||
(le1 : I → I → Prop) [DecidableRel le1] (l : List (Σ i, f i))
|
||
(i : I) (a : f i) :
|
||
(orderedInsertEquiv (fun i j => le1 i.fst j.fst) l ⟨i, a⟩) =
|
||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||
((orderedInsertEquiv le1 (List.map (fun i => i.1) l) i).trans
|
||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||
ext x
|
||
match x with
|
||
| ⟨0, h0⟩ =>
|
||
simp only [List.length_cons, Fin.zero_eta, Equiv.trans_apply, RelIso.coe_fn_toEquiv,
|
||
Fin.castOrderIso_apply, Fin.cast_zero, Fin.coe_cast]
|
||
erw [orderedInsertEquiv_zero, orderedInsertEquiv_zero]
|
||
simp [orderedInsertPos_sigma]
|
||
| ⟨Nat.succ n, h0⟩ =>
|
||
simp only [List.length_cons, Nat.succ_eq_add_one, Equiv.trans_apply, RelIso.coe_fn_toEquiv,
|
||
Fin.castOrderIso_apply, Fin.cast_mk, Fin.coe_cast]
|
||
erw [orderedInsertEquiv_succ, orderedInsertEquiv_succ]
|
||
simp only [orderedInsertPos_sigma, Fin.coe_cast]
|
||
rw [Fin.succAbove, Fin.succAbove]
|
||
simp only [Fin.castSucc_mk, Fin.mk_lt_mk, Fin.succ_mk]
|
||
split
|
||
· rfl
|
||
· rfl
|
||
|
||
/-- This result is taken from:
|
||
https://github.com/leanprover/lean4/blob/master/src/Init/Data/List/Nat/InsertIdx.lean
|
||
with simple modification here to make it run.
|
||
The file it was taken from is licensed under the Apache License, Version 2.0.
|
||
and written by Parikshit Khanna, Jeremy Avigad, Leonardo de Moura,
|
||
Floris van Doorn, Mario Carneiro.
|
||
|
||
Once PhysLean is updated to a more recent version of Lean this result will be removed.
|
||
-/
|
||
theorem length_insertIdx' : ∀ n as, (List.insertIdx n a as).length =
|
||
if n ≤ as.length then as.length + 1 else as.length
|
||
| 0, _ => by simp
|
||
| n + 1, [] => by rfl
|
||
| n + 1, a :: as => by
|
||
simp only [List.insertIdx_succ_cons, List.length_cons, length_insertIdx',
|
||
Nat.add_le_add_iff_right]
|
||
split <;> rfl
|
||
|
||
lemma orderedInsert_eq_insertIdx_orderedInsertPos {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
(r : List I) (r0 : I) :
|
||
List.orderedInsert le1 r0 r = List.insertIdx (orderedInsertPos le1 r r0).1 r0 r := by
|
||
apply List.ext_get
|
||
· simp only [List.orderedInsert_length]
|
||
rw [List.length_insertIdx]
|
||
have h1 := orderedInsertPos_lt_length le1 r r0
|
||
exact (if_pos (Nat.le_of_succ_le_succ h1)).symm
|
||
intro n h1 h2
|
||
obtain ⟨n', hn'⟩ := (orderedInsertEquiv le1 r r0).surjective ⟨n, h1⟩
|
||
rw [← hn']
|
||
have hn'' : n = ((orderedInsertEquiv le1 r r0) n').val := by rw [hn']
|
||
subst hn''
|
||
rw [← orderedInsertEquiv_get]
|
||
simp only [List.length_cons, Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem]
|
||
match n' with
|
||
| ⟨0, h0⟩ =>
|
||
simp only [List.getElem_cons_zero, orderedInsertEquiv, List.length_cons, Nat.succ_eq_add_one,
|
||
OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Fin.zero_eta, Equiv.trans_apply,
|
||
finExtractOne_apply_eq, Fin.isValue, finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
|
||
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
|
||
rw [List.getElem_insertIdx_self]
|
||
| ⟨Nat.succ n', h0⟩ =>
|
||
simp only [Nat.succ_eq_add_one, List.getElem_cons_succ, List.length_cons]
|
||
have hr := orderedInsertEquiv_succ le1 r r0 n' h0
|
||
trans (List.insertIdx (↑(orderedInsertPos le1 r r0)) r0 r).get
|
||
⟨↑((orderedInsertEquiv le1 r r0) ⟨n' +1, h0⟩), h2⟩
|
||
swap
|
||
· rfl
|
||
rw [Fin.ext_iff] at hr
|
||
have hx : (⟨↑((orderedInsertEquiv le1 r r0) ⟨n' +1, h0⟩), h2⟩ :
|
||
Fin (List.insertIdx (↑(orderedInsertPos le1 r r0)) r0 r).length) =
|
||
⟨((⟨↑(orderedInsertPos le1 r r0),
|
||
orderedInsertPos_lt_length le1 r r0⟩ : Fin ((r).length + 1))).succAbove
|
||
⟨n', Nat.succ_lt_succ_iff.mp h0⟩, by
|
||
erw [← hr]
|
||
exact h2⟩ := by
|
||
rw [Fin.ext_iff]
|
||
simp only [List.length_cons]
|
||
simpa using hr
|
||
rw [hx]
|
||
simp only [Fin.succAbove, Fin.castSucc_mk, Fin.mk_lt_mk, Fin.succ_mk, List.get_eq_getElem]
|
||
by_cases hn' : n' < ↑(orderedInsertPos le1 r r0)
|
||
· simp only [hn', ↓reduceIte]
|
||
erw [List.getElem_insertIdx_of_lt]
|
||
exact hn'
|
||
· simp only [hn', ↓reduceIte]
|
||
rw [List.getElem_insertIdx_of_gt]
|
||
· rfl
|
||
· omega
|
||
|
||
/-- The equivalence between `Fin l.length ≃ Fin (List.insertionSort r l).length` induced by the
|
||
sorting algorithm. -/
|
||
def insertionSortEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] : (l : List α) →
|
||
Fin l.length ≃ Fin (List.insertionSort r l).length
|
||
| [] => Equiv.refl _
|
||
| a :: l =>
|
||
(Fin.equivCons (insertionSortEquiv r l)).trans (orderedInsertEquiv r (List.insertionSort r l) a)
|
||
|
||
lemma insertionSortEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] : (l : List α) →
|
||
l.get ∘ (insertionSortEquiv r l).symm = (List.insertionSort r l).get
|
||
| [] => by rfl
|
||
| a :: l => by
|
||
rw [insertionSortEquiv]
|
||
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘
|
||
(orderedInsertEquiv r (List.insertionSort r l) a).symm = _
|
||
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm =
|
||
(a :: List.insertionSort r l).get := by
|
||
ext x
|
||
match x with
|
||
| ⟨0, h⟩ => rfl
|
||
| ⟨Nat.succ x, h⟩ =>
|
||
change _ = (List.insertionSort r l).get _
|
||
rw [← insertionSortEquiv_get (r := r) l]
|
||
rfl
|
||
rw [hl, orderedInsertEquiv_get r (List.insertionSort r l) a]
|
||
rfl
|
||
|
||
lemma insertionSortEquiv_congr {α : Type} {r : α → α → Prop} [DecidableRel r] (l l' : List α)
|
||
(h : l = l') : insertionSortEquiv r l = (Fin.castOrderIso (by simp [h])).toEquiv.trans
|
||
((insertionSortEquiv r l').trans (Fin.castOrderIso (by simp [h])).toEquiv) := by
|
||
subst h
|
||
rfl
|
||
lemma insertionSort_get_comp_insertionSortEquiv {α : Type} {r : α → α → Prop} [DecidableRel r]
|
||
(l : List α) : (List.insertionSort r l).get ∘ (insertionSortEquiv r l) = l.get := by
|
||
rw [← insertionSortEquiv_get]
|
||
funext x
|
||
simp
|
||
|
||
lemma insertionSort_eq_ofFn {α : Type} {r : α → α → Prop} [DecidableRel r] (l : List α) :
|
||
List.insertionSort r l = List.ofFn (l.get ∘ (insertionSortEquiv r l).symm) := by
|
||
rw [insertionSortEquiv_get (r := r)]
|
||
exact (List.ofFn_get (List.insertionSort r l)).symm
|
||
|
||
lemma insertionSortEquiv_order {α : Type} {r : α → α → Prop} [DecidableRel r] :
|
||
(l : List α) → (i : Fin l.length) → (j : Fin l.length) → (hij : i < j)
|
||
→ (hij' : insertionSortEquiv r l j < insertionSortEquiv r l i) →
|
||
¬ r l[i] l[j]
|
||
| [], i, _, _, _ => Fin.elim0 i
|
||
| a :: as, ⟨0, hi⟩, ⟨j + 1, hj⟩, hij, hij' => by
|
||
simp only [List.length_cons, Fin.zero_eta, Fin.getElem_fin, Fin.val_zero,
|
||
List.getElem_cons_zero, List.getElem_cons_succ]
|
||
nth_rewrite 2 [insertionSortEquiv] at hij'
|
||
simp only [List.insertionSort.eq_2, List.length_cons, Nat.succ_eq_add_one, Fin.zero_eta,
|
||
Equiv.trans_apply, equivCons_zero] at hij'
|
||
have hx := orderedInsertEquiv_zero r (List.insertionSort r as) a
|
||
simp only [List.length_cons, Fin.zero_eta] at hx
|
||
rw [hx] at hij'
|
||
have h1 := lt_orderedInsertPos_rel_fin r a (List.insertionSort r as) _ hij'
|
||
rw [insertionSortEquiv] at h1
|
||
simp only [Nat.succ_eq_add_one, List.insertionSort.eq_2, Equiv.trans_apply,
|
||
equivCons_succ] at h1
|
||
rw [← orderedInsertEquiv_get] at h1
|
||
simp only [List.length_cons, Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem,
|
||
Fin.val_succ, List.getElem_cons_succ] at h1
|
||
rw [← List.get_eq_getElem] at h1
|
||
rw [← insertionSortEquiv_get] at h1
|
||
simpa using h1
|
||
| a :: as, ⟨i + 1, hi⟩, ⟨j + 1, hj⟩, hij, hij' => by
|
||
simp only [List.insertionSort.eq_2, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
|
||
Equiv.trans_apply, equivCons_succ] at hij'
|
||
have h1 := orderedInsertEquiv_monotone_fin_succ _ _ _ _ _ hij'
|
||
have h2 := insertionSortEquiv_order as ⟨i, Nat.succ_lt_succ_iff.mp hi⟩
|
||
⟨j, Nat.succ_lt_succ_iff.mp hj⟩ (by simpa using hij) h1
|
||
simpa using h2
|
||
|
||
/-- Optional erase of an element in a list. For `none` returns the list, for `some i` returns
|
||
the list with the `i`'th element erased. -/
|
||
def optionErase {I : Type} (l : List I) (i : Option (Fin l.length)) : List I :=
|
||
match i with
|
||
| none => l
|
||
| some i => List.eraseIdx l i
|
||
|
||
lemma eraseIdx_length' {I : Type} (l : List I) (i : Fin l.length) :
|
||
(List.eraseIdx l i).length = l.length - 1 := by
|
||
simp [List.length_eraseIdx]
|
||
|
||
lemma eraseIdx_length {I : Type} (l : List I) (i : Fin l.length) :
|
||
(List.eraseIdx l i).length + 1 = l.length := by
|
||
simp only [List.length_eraseIdx, Fin.is_lt, ↓reduceIte]
|
||
have hi := i.prop
|
||
omega
|
||
|
||
lemma eraseIdx_length_succ {I : Type} (l : List I) (i : Fin l.length) :
|
||
(List.eraseIdx l i).length.succ = l.length := by
|
||
simp only [List.length_eraseIdx, Fin.is_lt, ↓reduceIte]
|
||
have hi := i.prop
|
||
omega
|
||
|
||
lemma eraseIdx_cons_length {I : Type} (a : I) (l : List I) (i : Fin (a :: l).length) :
|
||
(List.eraseIdx (a :: l) i).length= l.length := by
|
||
simp [List.length_eraseIdx]
|
||
|
||
lemma eraseIdx_get {I : Type} (l : List I) (i : Fin l.length) :
|
||
(List.eraseIdx l i).get = l.get ∘ (Fin.cast (eraseIdx_length l i)) ∘
|
||
(Fin.cast (eraseIdx_length l i).symm i).succAbove := by
|
||
ext x
|
||
simp only [Function.comp_apply, List.get_eq_getElem, List.eraseIdx, List.getElem_eraseIdx]
|
||
simp only [Fin.succAbove, Fin.coe_cast]
|
||
by_cases hi: x.castSucc < Fin.cast (Eq.symm (eraseIdx_length l i)) i
|
||
· simp only [hi, ↓reduceIte, Fin.coe_castSucc, dite_eq_left_iff, not_lt]
|
||
intro h
|
||
rw [Fin.lt_def] at hi
|
||
simp_all only [Fin.coe_castSucc, Fin.coe_cast]
|
||
omega
|
||
· simp only [hi, ↓reduceIte, Fin.val_succ]
|
||
rw [Fin.lt_def] at hi
|
||
simp only [Fin.coe_castSucc, Fin.coe_cast, not_lt] at hi
|
||
have hn : ¬ x.val < i.val := by omega
|
||
simp [hn]
|
||
|
||
lemma eraseIdx_insertionSort {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
[IsTotal I le1] [IsTrans I le1] :
|
||
(n : ℕ) → (r : List I) → (hn : n < r.length) →
|
||
(List.insertionSort le1 r).eraseIdx ↑((insertionSortEquiv le1 r) ⟨n, hn⟩)
|
||
= List.insertionSort le1 (r.eraseIdx n)
|
||
| 0, [], _ => by rfl
|
||
| 0, (r0 :: r), hn => by
|
||
simp only [List.insertionSort, List.insertionSort.eq_2, List.length_cons, insertionSortEquiv,
|
||
Nat.succ_eq_add_one, Fin.zero_eta, Equiv.trans_apply, equivCons_zero, List.eraseIdx_zero,
|
||
List.tail_cons]
|
||
erw [orderedInsertEquiv_zero]
|
||
simp
|
||
| Nat.succ n, [], hn => by rfl
|
||
| Nat.succ n, (r0 :: r), hn => by
|
||
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
|
||
Equiv.trans_apply, equivCons_succ]
|
||
have hOr := orderedInsert_eraseIdx_orderedInsertEquiv_fin_succ le1
|
||
(List.insertionSort le1 r) r0 ((insertionSortEquiv le1 r) ⟨n, by simpa using hn⟩)
|
||
erw [hOr]
|
||
congr
|
||
refine eraseIdx_insertionSort le1 n r _
|
||
intro i j hij hn
|
||
have hx := List.Sorted.rel_get_of_lt (r := le1) (l := (List.insertionSort le1 r))
|
||
(List.sorted_insertionSort le1 r) hij
|
||
have ht (i j k : I) (hij : le1 i j) (hjk : ¬ le1 k j) : ¬ le1 k i := by
|
||
intro hik
|
||
have ht := IsTrans.trans (r := le1) k i j hik hij
|
||
exact hjk ht
|
||
exact ht ((List.insertionSort le1 r).get i) ((List.insertionSort le1 r).get j) r0 hx hn
|
||
|
||
lemma eraseIdx_insertionSort_fin {I : Type} (le1 : I → I → Prop) [DecidableRel le1]
|
||
[IsTotal I le1] [IsTrans I le1] (r : List I) (n : Fin r.length) :
|
||
(List.insertionSort le1 r).eraseIdx ↑((PhysLean.List.insertionSortEquiv le1 r) n)
|
||
= List.insertionSort le1 (r.eraseIdx n) :=
|
||
eraseIdx_insertionSort le1 n.val r (Fin.prop n)
|
||
|
||
/-- Given a list `i :: l` the left-most minimal position `a` of `i :: l` wrt `r`.
|
||
That is the first position
|
||
of `l` such that for every element `(i :: l)[b]` before that position
|
||
`r ((i :: l)[b]) ((i :: l)[a])` is not true. The use of `i :: l` here
|
||
rather then just `l` is to ensure that such a position exists. . -/
|
||
def insertionSortMinPos {α : Type} (r : α → α → Prop) [DecidableRel r] (i : α) (l : List α) :
|
||
Fin (i :: l).length := (insertionSortEquiv r (i :: l)).symm ⟨0, by
|
||
rw [insertionSort_length]
|
||
exact Nat.zero_lt_succ l.length⟩
|
||
|
||
/-- The element of `i :: l` at `insertionSortMinPos`. -/
|
||
def insertionSortMin {α : Type} (r : α → α → Prop) [DecidableRel r] (i : α) (l : List α) :
|
||
α := (i :: l).get (insertionSortMinPos r i l)
|
||
|
||
lemma insertionSortMin_eq_insertionSort_head {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||
(i : α) (l : List α) :
|
||
insertionSortMin r i l = (List.insertionSort r (i :: l)).head (by
|
||
refine List.ne_nil_of_length_pos ?_
|
||
rw [insertionSort_length]
|
||
exact Nat.zero_lt_succ l.length) := by
|
||
trans (List.insertionSort r (i :: l)).get (⟨0, by
|
||
rw [insertionSort_length]; exact Nat.zero_lt_succ l.length⟩)
|
||
· rw [← insertionSortEquiv_get]
|
||
rfl
|
||
· exact List.get_mk_zero
|
||
(Eq.mpr (id (congrArg (fun _a => 0 < _a) (insertionSort_length r (i :: l))))
|
||
(Nat.zero_lt_succ l.length))
|
||
|
||
/-- The list remaining after dropping the element at the position determined by
|
||
`insertionSortMinPos`. -/
|
||
def insertionSortDropMinPos {α : Type} (r : α → α → Prop) [DecidableRel r] (i : α) (l : List α) :
|
||
List α := (i :: l).eraseIdx (insertionSortMinPos r i l)
|
||
|
||
lemma insertionSort_eq_insertionSortMin_cons {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||
[IsTotal α r] [IsTrans α r] (i : α) (l : List α) :
|
||
List.insertionSort r (i :: l) =
|
||
(insertionSortMin r i l) :: List.insertionSort r (insertionSortDropMinPos r i l) := by
|
||
rw [insertionSortDropMinPos, ← eraseIdx_insertionSort_fin]
|
||
conv_rhs =>
|
||
rhs
|
||
rhs
|
||
rw [insertionSortMinPos, Equiv.apply_symm_apply]
|
||
simp only [List.insertionSort, List.eraseIdx_zero]
|
||
rw [insertionSortMin_eq_insertionSort_head]
|
||
exact (List.head_cons_tail _ _).symm
|
||
|
||
/-- Optional erase of an element in a list, with addition for `none`. For `none` adds `a` to the
|
||
front of the list, for `some i` removes the `i`th element of the list (does not add `a`).
|
||
E.g. `optionEraseZ [0, 1, 2] 4 none = [4, 0, 1, 2]` and
|
||
`optionEraseZ [0, 1, 2] 4 (some 1) = [0, 2]`. -/
|
||
def optionEraseZ {I : Type} (l : List I) (a : I) (i : Option (Fin l.length)) : List I :=
|
||
match i with
|
||
| none => a :: l
|
||
| some i => List.eraseIdx l i
|
||
|
||
@[simp]
|
||
lemma optionEraseZ_some_length {I : Type} (l : List I) (a : I) (i : (Fin l.length)) :
|
||
(optionEraseZ l a (some i)).length = l.length - 1 := by
|
||
simp [optionEraseZ, List.length_eraseIdx]
|
||
|
||
lemma optionEraseZ_ext {I : Type} {l l' : List I} {a a' : I} {i : Option (Fin l.length)}
|
||
{i' : Option (Fin l'.length)} (hl : l = l') (ha : a = a')
|
||
(hi : Option.map (Fin.cast (by rw [hl])) i = i') :
|
||
optionEraseZ l a i = optionEraseZ l' a' i' := by
|
||
subst hl
|
||
subst ha
|
||
cases hi
|
||
congr
|
||
simp
|
||
|
||
lemma mem_take_finrange : (n m : ℕ) → (a : Fin n) → a ∈ List.take m (List.finRange n) ↔ a.val < m
|
||
| 0, m, a => Fin.elim0 a
|
||
| n+1, 0, a => by
|
||
simp
|
||
| n +1, m + 1, ⟨0, h⟩ => by
|
||
simp [List.finRange_succ]
|
||
| n +1, m + 1, ⟨i + 1, h⟩ => by
|
||
simp only [List.finRange_succ, List.take_succ_cons, List.mem_cons, Fin.ext_iff, Fin.val_zero,
|
||
AddLeftCancelMonoid.add_eq_zero, one_ne_zero, and_false, false_or, add_lt_add_iff_right]
|
||
rw [← List.map_take, @List.mem_map]
|
||
apply Iff.intro
|
||
· intro h
|
||
obtain ⟨a, ha⟩ := h
|
||
rw [mem_take_finrange n m a, Fin.ext_iff] at ha
|
||
simp_all only [Fin.val_succ, add_left_inj]
|
||
omega
|
||
· intro h1
|
||
use ⟨i, Nat.succ_lt_succ_iff.mp h⟩
|
||
simp only [Fin.succ_mk, and_true]
|
||
rw [mem_take_finrange n m ⟨i, Nat.succ_lt_succ_iff.mp h⟩]
|
||
exact h1
|
||
|
||
end PhysLean.List
|