PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean
2025-02-13 10:44:15 +00:00

248 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder
import HepLean.PerturbationTheory.FieldOpAlgebra.SuperCommute
/-!
# Normal Ordering on Field operator algebra
-/
namespace FieldSpecification
open FieldOpFreeAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrderF_superCommuteF_eq_zero_mul`
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero
(φa φa' : 𝓕.CrAnFieldOp) (φs φs' : List 𝓕.CrAnFieldOp) :
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * ofCrAnListF φs') = 0 := by
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommuteF_of_create_create φa φa' hφa hφa']
simp
· rw [normalOrderF_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnListF φs)
(ofCrAnListF φs')]
simp
· rw [normalOrderF_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnListF φs)
(ofCrAnListF φs')]
simp
· rw [normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommuteF_of_annihilate_annihilate φa φa' hφa hφa']
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero
(φa φa' : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp)
(a : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * a) = 0 := by
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap (ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF) = 0 := by
apply ofCrAnListFBasis.ext
intro l
simp only [FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap ((ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF))) a = 0
rw [hf]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul (φa φa' : 𝓕.CrAnFieldOp)
(a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b) = 0 := by
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
([ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b)) a = 0
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
([ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b) = 0 := by
apply ofCrAnListFBasis.ext
intro l
simp only [mulLinearMap, FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero φa φa' _ _
rw [hf]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnListF φs]ₛF * b) = 0 := by
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnListF_singleton]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul]
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnOpF φa]ₛF * b) = 0 := by
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_symm, ofCrAnListF_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul
(φs φs' : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnListF φs']ₛF * b) = 0 := by
rw [superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul]
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul
(φs : List 𝓕.CrAnFieldOp)
(a b c : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [ofCrAnListF φs, c]ₛF * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) = 0 := by
apply ofCrAnListFBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul
(a b c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛF * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
apply ofCrAnListFBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ([d, c]ₛF * b) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 b c d]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛF) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a 1 c d]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.FieldOpFreeAlgebra) :
ι 𝓝ᶠ(a * [d, c]ₛF * b1 * b2) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a (b1 * b2) c d]
congr 2
noncomm_ring
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ([d, c]ₛF) = 0 := by
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 1 c d]
simp
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
(h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) :
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrderF_zero_of_mem_ideal (a - b) h
/-- For a field specification `𝓕`, `normalOrder` is the linear map
`FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕`
defined as the descent of `ι ∘ₗ normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕`
from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`.
This descent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes.
The notation `𝓝(a)` is used for `normalOrder a` for `a` an element of `FieldOpAlgebra 𝓕`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
map_add' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_smul, ι_apply, ι_apply]
simp
@[inherit_doc normalOrder]
scoped[FieldSpecification.FieldOpAlgebra] notation "𝓝(" a ")" => normalOrder a
end FieldOpAlgebra
end FieldSpecification