PhysLean/HepLean/SpaceTime/LorentzVector/Complex/Metric.lean

193 lines
9.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Complex.Two
import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
import HepLean.SpaceTime.LorentzVector.Complex.Unit
/-!
# Metric for complex Lorentz vectors
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz
/-- The metric `ηᵃᵃ` as an element of `(complexContr ⊗ complexContr).V`. -/
def contrMetricVal : (complexContr ⊗ complexContr).V :=
contrContrToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
/-- The expansion of `contrMetricVal` into basis vectors. -/
lemma contrMetricVal_expand_tmul : contrMetricVal =
complexContrBasis (Sum.inl 0) ⊗ₜ[] complexContrBasis (Sum.inl 0)
- complexContrBasis (Sum.inr 0) ⊗ₜ[] complexContrBasis (Sum.inr 0)
- complexContrBasis (Sum.inr 1) ⊗ₜ[] complexContrBasis (Sum.inr 1)
- complexContrBasis (Sum.inr 2) ⊗ₜ[] complexContrBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal, Fin.isValue]
erw [contrContrToMatrix_symm_expand_tmul]
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
zero_ne_one, Fin.reduceEq, one_ne_zero]
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
simp only [Fin.isValue, one_smul, neg_smul]
rfl
/-- The metric `ηᵃᵃ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexContr`,
making its invariance under the action of `SL(2,)`. -/
def contrMetric : 𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexContr where
hom := {
toFun := fun a =>
let a' : := a
a' • contrMetricVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • contrMetricVal =
(TensorProduct.map (complexContr.ρ M) (complexContr.ρ M)) (x' • contrMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal]
erw [contrContrToMatrix_ρ_symm]
apply congrArg
simp only [LorentzGroup.toComplex_mul_minkowskiMatrix_mul_transpose]
lemma contrMetric_apply_one : contrMetric.hom (1 : ) = contrMetricVal := by
change contrMetric.hom.toFun (1 : ) = contrMetricVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
contrMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-- The metric `ηᵢᵢ` as an element of `(complexCo ⊗ complexCo).V`. -/
def coMetricVal : (complexCo ⊗ complexCo).V :=
coCoToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
/-- The expansion of `coMetricVal` into basis vectors. -/
lemma coMetricVal_expand_tmul : coMetricVal =
complexCoBasis (Sum.inl 0) ⊗ₜ[] complexCoBasis (Sum.inl 0)
- complexCoBasis (Sum.inr 0) ⊗ₜ[] complexCoBasis (Sum.inr 0)
- complexCoBasis (Sum.inr 1) ⊗ₜ[] complexCoBasis (Sum.inr 1)
- complexCoBasis (Sum.inr 2) ⊗ₜ[] complexCoBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal, Fin.isValue]
erw [coCoToMatrix_symm_expand_tmul]
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
zero_ne_one, Fin.reduceEq, one_ne_zero]
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
simp only [Fin.isValue, one_smul, neg_smul]
rfl
/-- The metric `ηᵢᵢ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexCo`,
making its invariance under the action of `SL(2,)`. -/
def coMetric : 𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexCo where
hom := {
toFun := fun a =>
let a' : := a
a' • coMetricVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • coMetricVal =
(TensorProduct.map (complexCo.ρ M) (complexCo.ρ M)) (x' • coMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal]
erw [coCoToMatrix_ρ_symm]
apply congrArg
rw [LorentzGroup.toComplex_inv]
simp only [lorentzGroupIsGroup_inv, SL2C.toLorentzGroup_apply_coe,
LorentzGroup.toComplex_transpose_mul_minkowskiMatrix_mul_self]
lemma coMetric_apply_one : coMetric.hom (1 : ) = coMetricVal := by
change coMetric.hom.toFun (1 : ) = coMetricVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
coMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-!
## Contraction of metrics
-/
lemma contrCoContraction_apply_metric : (β_ complexContr complexCo).hom.hom
((complexContr.V ◁ (λ_ complexCo.V).hom)
((complexContr.V ◁ contrCoContraction.hom ▷ complexCo.V)
((complexContr.V ◁ (α_ complexContr.V complexCo.V complexCo.V).inv)
((α_ complexContr.V complexContr.V (complexCo.V ⊗ complexCo.V)).hom
(contrMetric.hom (1 : ) ⊗ₜ[] coMetric.hom (1 : )))))) =
coContrUnit.hom (1 : ) := by
rw [contrMetric_apply_one, coMetric_apply_one]
rw [contrMetricVal_expand_tmul, coMetricVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Fin.isValue, tmul_sub, add_tmul, neg_tmul, map_sub, map_add, map_neg, tmul_sub, sub_tmul]
have h1 (x1 x2 : complexContr) (y1 y2 :complexCo) :
(complexContr.V ◁ (λ_ complexCo.V).hom)
((complexContr.V ◁ contrCoContraction.hom ▷ complexCo.V) (((complexContr.V ◁
(α_ complexContr.V complexCo.V complexCo.V).inv)
((α_ complexContr.V complexContr.V (complexCo.V ⊗ complexCo.V)).hom
((x1 ⊗ₜ[] x2) ⊗ₜ[] y1 ⊗ₜ[] y2)))))
= x1 ⊗ₜ[] ((λ_ complexCo.V).hom ((contrCoContraction.hom (x2 ⊗ₜ[] y1)) ⊗ₜ[] y2)) := rfl
repeat rw (config := { transparency := .instances }) [h1]
repeat rw [contrCoContraction_basis']
simp only [Fin.isValue, ↓reduceIte, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, one_smul,
reduceCtorEq, zero_tmul, map_zero, tmul_zero, sub_zero, zero_sub, Sum.inr.injEq, one_ne_zero,
Fin.reduceEq, sub_neg_eq_add, zero_ne_one, sub_self]
erw [coContrUnit_apply_one, coContrUnitVal_expand_tmul]
rfl
lemma coContrContraction_apply_metric : (β_ complexCo complexContr).hom.hom
((complexCo.V ◁ (λ_ complexContr.V).hom)
((complexCo.V ◁ coContrContraction.hom ▷ complexContr.V)
((complexCo.V ◁ (α_ complexCo.V complexContr.V complexContr.V).inv)
((α_ complexCo.V complexCo.V (complexContr.V ⊗ complexContr.V)).hom
(coMetric.hom (1 : ) ⊗ₜ[] contrMetric.hom (1 : )))))) =
contrCoUnit.hom (1 : ) := by
rw [coMetric_apply_one, contrMetric_apply_one]
rw [coMetricVal_expand_tmul, contrMetricVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Fin.isValue, tmul_sub, add_tmul, neg_tmul, map_sub, map_add, map_neg, tmul_sub, sub_tmul]
have h1 (x1 x2 : complexCo) (y1 y2 :complexContr) :
(complexCo.V ◁ (λ_ complexContr.V).hom)
((complexCo.V ◁ coContrContraction.hom ▷ complexContr.V) (((complexCo.V ◁
(α_ complexCo.V complexContr.V complexContr.V).inv)
((α_ complexCo.V complexCo.V (complexContr.V ⊗ complexContr.V)).hom
((x1 ⊗ₜ[] x2) ⊗ₜ[] y1 ⊗ₜ[] y2)))))
= x1 ⊗ₜ[] ((λ_ complexContr.V).hom ((coContrContraction.hom (x2 ⊗ₜ[] y1)) ⊗ₜ[] y2)) := rfl
repeat rw (config := { transparency := .instances }) [h1]
repeat rw [coContrContraction_basis']
simp only [Fin.isValue, ↓reduceIte, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, one_smul,
reduceCtorEq, zero_tmul, map_zero, tmul_zero, sub_zero, zero_sub, Sum.inr.injEq, one_ne_zero,
Fin.reduceEq, sub_neg_eq_add, zero_ne_one, sub_self]
erw [contrCoUnit_apply_one, contrCoUnitVal_expand_tmul]
rfl
end Lorentz
end