746 lines
35 KiB
Text
746 lines
35 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.WeylFermion.Basic
|
||
import HepLean.SpaceTime.WeylFermion.Contraction
|
||
import Mathlib.LinearAlgebra.TensorProduct.Matrix
|
||
/-!
|
||
|
||
# Tensor product of two Weyl fermion
|
||
|
||
-/
|
||
|
||
namespace Fermion
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open CategoryTheory.MonoidalCategory
|
||
|
||
/-!
|
||
|
||
## Equivalences to matrices.
|
||
|
||
-/
|
||
|
||
/-- Equivalence of `leftHanded ⊗ leftHanded` to `2 x 2` complex matrices. -/
|
||
def leftLeftToMatrix : (leftHanded ⊗ leftHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct leftBasis leftBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `leftLeftToMatrix` in terms of the standard basis. -/
|
||
lemma leftLeftToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
leftLeftToMatrix.symm M = ∑ i, ∑ j, M i j • (leftBasis i ⊗ₜ[ℂ] leftBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, leftLeftToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply leftBasis leftBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `altLeftHanded ⊗ altLeftHanded` to `2 x 2` complex matrices. -/
|
||
def altLeftaltLeftToMatrix : (altLeftHanded ⊗ altLeftHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct altLeftBasis altLeftBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `altLeftaltLeftToMatrix` in terms of the standard basis. -/
|
||
lemma altLeftaltLeftToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
altLeftaltLeftToMatrix.symm M = ∑ i, ∑ j, M i j • (altLeftBasis i ⊗ₜ[ℂ] altLeftBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftaltLeftToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply altLeftBasis altLeftBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `leftHanded ⊗ altLeftHanded` to `2 x 2` complex matrices. -/
|
||
def leftAltLeftToMatrix : (leftHanded ⊗ altLeftHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct leftBasis altLeftBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `leftAltLeftToMatrix` in terms of the standard basis. -/
|
||
lemma leftAltLeftToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
leftAltLeftToMatrix.symm M = ∑ i, ∑ j, M i j • (leftBasis i ⊗ₜ[ℂ] altLeftBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, leftAltLeftToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply leftBasis altLeftBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `altLeftHanded ⊗ leftHanded` to `2 x 2` complex matrices. -/
|
||
def altLeftLeftToMatrix : (altLeftHanded ⊗ leftHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct altLeftBasis leftBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `altLeftLeftToMatrix` in terms of the standard basis. -/
|
||
lemma altLeftLeftToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
altLeftLeftToMatrix.symm M = ∑ i, ∑ j, M i j • (altLeftBasis i ⊗ₜ[ℂ] leftBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftLeftToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply altLeftBasis leftBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `rightHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
|
||
def rightRightToMatrix : (rightHanded ⊗ rightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct rightBasis rightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `rightRightToMatrix` in terms of the standard basis. -/
|
||
lemma rightRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
rightRightToMatrix.symm M = ∑ i, ∑ j, M i j • (rightBasis i ⊗ₜ[ℂ] rightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, rightRightToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply rightBasis rightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `altRightHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
|
||
def altRightAltRightToMatrix : (altRightHanded ⊗ altRightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct altRightBasis altRightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `altRightAltRightToMatrix` in terms of the standard basis. -/
|
||
lemma altRightAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
altRightAltRightToMatrix.symm M =
|
||
∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[ℂ] altRightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightAltRightToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply altRightBasis altRightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `rightHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
|
||
def rightAltRightToMatrix : (rightHanded ⊗ altRightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct rightBasis altRightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `rightAltRightToMatrix` in terms of the standard basis. -/
|
||
lemma rightAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
rightAltRightToMatrix.symm M = ∑ i, ∑ j, M i j • (rightBasis i ⊗ₜ[ℂ] altRightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, rightAltRightToMatrix, LinearEquiv.trans_symm,
|
||
LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply rightBasis altRightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `altRightHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
|
||
def altRightRightToMatrix : (altRightHanded ⊗ rightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct altRightBasis rightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `altRightRightToMatrix` in terms of the standard basis. -/
|
||
lemma altRightRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
altRightRightToMatrix.symm M = ∑ i, ∑ j, M i j • (altRightBasis i ⊗ₜ[ℂ] rightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altRightRightToMatrix, LinearEquiv.trans_symm,
|
||
LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply altRightBasis rightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `altLeftHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
|
||
def altLeftAltRightToMatrix : (altLeftHanded ⊗ altRightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct altLeftBasis altRightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `altLeftAltRightToMatrix` in terms of the standard basis. -/
|
||
lemma altLeftAltRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
altLeftAltRightToMatrix.symm M = ∑ i, ∑ j, M i j • (altLeftBasis i ⊗ₜ[ℂ] altRightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, altLeftAltRightToMatrix,
|
||
LinearEquiv.trans_symm, LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply altLeftBasis altRightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-- Equivalence of `leftHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
|
||
def leftRightToMatrix : (leftHanded ⊗ rightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||
(Basis.tensorProduct leftBasis rightBasis).repr ≪≫ₗ
|
||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||
|
||
/-- Expanding `leftRightToMatrix` in terms of the standard basis. -/
|
||
lemma leftRightToMatrix_symm_expand_tmul (M : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
leftRightToMatrix.symm M = ∑ i, ∑ j, M i j • (leftBasis i ⊗ₜ[ℂ] rightBasis j) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, leftRightToMatrix, LinearEquiv.trans_symm,
|
||
LinearEquiv.trans_apply, Basis.repr_symm_apply]
|
||
rw [Finsupp.linearCombination_apply_of_mem_supported ℂ (s := Finset.univ)]
|
||
· erw [Finset.sum_product]
|
||
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
|
||
erw [Basis.tensorProduct_apply leftBasis rightBasis i j]
|
||
rfl
|
||
· simp
|
||
|
||
/-!
|
||
|
||
## Group actions
|
||
|
||
-/
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `leftHanded ⊗ leftHanded` is equivalent to
|
||
`M.1 * leftLeftToMatrix v * (M.1)ᵀ`. -/
|
||
lemma leftLeftToMatrix_ρ (v : (leftHanded ⊗ leftHanded).V) (M : SL(2,ℂ)) :
|
||
leftLeftToMatrix (TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M) v) =
|
||
M.1 * leftLeftToMatrix v * (M.1)ᵀ := by
|
||
nth_rewrite 1 [leftLeftToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(leftBasis.tensorProduct leftBasis) (leftBasis.tensorProduct leftBasis)
|
||
(TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((leftBasis.tensorProduct leftBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct leftBasis)
|
||
(leftBasis.tensorProduct leftBasis) (TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
|
||
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M)) (i, j) k)
|
||
* leftLeftToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ j : Fin 2, M.1 i j * leftLeftToMatrix v j x) * M.1 j x
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftLeftToMatrix v x1 x) * M.1 j x := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [leftBasis_ρ_apply, Finsupp.linearEquivFunOnFinite_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
rw [mul_assoc]
|
||
nth_rewrite 2 [mul_comm]
|
||
rw [← mul_assoc]
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `altLeftHanded ⊗ altLeftHanded` is equivalent to
|
||
`(M.1⁻¹)ᵀ * leftLeftToMatrix v * (M.1⁻¹)`. -/
|
||
lemma altLeftaltLeftToMatrix_ρ (v : (altLeftHanded ⊗ altLeftHanded).V) (M : SL(2,ℂ)) :
|
||
altLeftaltLeftToMatrix (TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M) v) =
|
||
(M.1⁻¹)ᵀ * altLeftaltLeftToMatrix v * (M.1⁻¹) := by
|
||
nth_rewrite 1 [altLeftaltLeftToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(altLeftBasis.tensorProduct altLeftBasis) (altLeftBasis.tensorProduct altLeftBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((altLeftBasis.tensorProduct altLeftBasis).repr v)))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct altLeftBasis)
|
||
(altLeftBasis.tensorProduct altLeftBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
|
||
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M)) (i, j) k)
|
||
* altLeftaltLeftToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftaltLeftToMatrix v x1 x) * (M.1)⁻¹ x j
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((M.1)⁻¹ x1 i * altLeftaltLeftToMatrix v x1 x) * (M.1)⁻¹ x j := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [altLeftBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `leftHanded ⊗ altLeftHanded` is equivalent to
|
||
`M.1 * leftAltLeftToMatrix v * (M.1⁻¹)`. -/
|
||
lemma leftAltLeftToMatrix_ρ (v : (leftHanded ⊗ altLeftHanded).V) (M : SL(2,ℂ)) :
|
||
leftAltLeftToMatrix (TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M) v) =
|
||
M.1 * leftAltLeftToMatrix v * (M.1⁻¹) := by
|
||
nth_rewrite 1 [leftAltLeftToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(leftBasis.tensorProduct altLeftBasis) (leftBasis.tensorProduct altLeftBasis)
|
||
(TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((leftBasis.tensorProduct altLeftBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct altLeftBasis)
|
||
(leftBasis.tensorProduct altLeftBasis)
|
||
(TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
|
||
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M)) (i, j) k)
|
||
* leftAltLeftToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, M.1 i x1 * leftAltLeftToMatrix v x1 x) * (M.1⁻¹) x j
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftAltLeftToMatrix v x1 x) * (M.1⁻¹) x j := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [leftBasis_ρ_apply, altLeftBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `altLeftHanded ⊗ leftHanded` is equivalent to
|
||
`(M.1⁻¹)ᵀ * leftAltLeftToMatrix v * (M.1)ᵀ`. -/
|
||
lemma altLeftLeftToMatrix_ρ (v : (altLeftHanded ⊗ leftHanded).V) (M : SL(2,ℂ)) :
|
||
altLeftLeftToMatrix (TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M) v) =
|
||
(M.1⁻¹)ᵀ * altLeftLeftToMatrix v * (M.1)ᵀ := by
|
||
nth_rewrite 1 [altLeftLeftToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(altLeftBasis.tensorProduct leftBasis) (altLeftBasis.tensorProduct leftBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((altLeftBasis.tensorProduct leftBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct leftBasis)
|
||
(altLeftBasis.tensorProduct leftBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
|
||
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M)) (i, j) k)
|
||
* altLeftLeftToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftLeftToMatrix v x1 x) * M.1 j x
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((M.1)⁻¹ x1 i * altLeftLeftToMatrix v x1 x) * M.1 j x:= by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [altLeftBasis_ρ_apply, leftBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `rightHanded ⊗ rightHanded` is equivalent to
|
||
`(M.1.map star) * rightRightToMatrix v * ((M.1.map star))ᵀ`. -/
|
||
lemma rightRightToMatrix_ρ (v : (rightHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
||
rightRightToMatrix (TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M) v) =
|
||
(M.1.map star) * rightRightToMatrix v * ((M.1.map star))ᵀ := by
|
||
nth_rewrite 1 [rightRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(rightBasis.tensorProduct rightBasis) (rightBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((rightBasis.tensorProduct rightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (rightBasis.tensorProduct rightBasis)
|
||
(rightBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M))
|
||
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
|
||
* rightRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1.map star) i x1 * rightRightToMatrix v x1 x) *
|
||
(M.1.map star) j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
|
||
((M.1.map star) i x1 * rightRightToMatrix v x1 x) * (M.1.map star) j x:= by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [rightBasis_ρ_apply, Finsupp.linearEquivFunOnFinite_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `altRightHanded ⊗ altRightHanded` is equivalent to
|
||
`((M.1⁻¹).conjTranspose * rightRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ`. -/
|
||
lemma altRightAltRightToMatrix_ρ (v : (altRightHanded ⊗ altRightHanded).V) (M : SL(2,ℂ)) :
|
||
altRightAltRightToMatrix (TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M) v) =
|
||
((M.1⁻¹).conjTranspose) * altRightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ) := by
|
||
nth_rewrite 1 [altRightAltRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(altRightBasis.tensorProduct altRightBasis) (altRightBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((altRightBasis.tensorProduct altRightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (altRightBasis.tensorProduct altRightBasis)
|
||
(altRightBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M))
|
||
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
|
||
* altRightAltRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (↑M)⁻¹ᴴ i x1 * altRightAltRightToMatrix v x1 x) *
|
||
(↑M)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
|
||
((↑M)⁻¹ᴴ i x1 * altRightAltRightToMatrix v x1 x) * (↑M)⁻¹ᴴ j x := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [altRightBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `rightHanded ⊗ altRightHanded` is equivalent to
|
||
`(M.1.map star) * rightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ`. -/
|
||
lemma rightAltRightToMatrix_ρ (v : (rightHanded ⊗ altRightHanded).V) (M : SL(2,ℂ)) :
|
||
rightAltRightToMatrix (TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M) v) =
|
||
(M.1.map star) * rightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ) := by
|
||
nth_rewrite 1 [rightAltRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(rightBasis.tensorProduct altRightBasis) (rightBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((rightBasis.tensorProduct altRightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (rightBasis.tensorProduct altRightBasis)
|
||
(rightBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M))
|
||
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
|
||
* rightAltRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1.map star) i x1 * rightAltRightToMatrix v x1 x)
|
||
* (↑M)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
|
||
((M.1.map star) i x1 * rightAltRightToMatrix v x1 x) * (↑M)⁻¹ᴴ j x := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [rightBasis_ρ_apply, altRightBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
/-- The group action of `SL(2,ℂ)` on `altRightHanded ⊗ rightHanded` is equivalent to
|
||
`((M.1⁻¹).conjTranspose * rightAltRightToMatrix v * ((M.1.map star)).ᵀ`. -/
|
||
lemma altRightRightToMatrix_ρ (v : (altRightHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
||
altRightRightToMatrix (TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M) v) =
|
||
((M.1⁻¹).conjTranspose) * altRightRightToMatrix v * (M.1.map star)ᵀ := by
|
||
nth_rewrite 1 [altRightRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(altRightBasis.tensorProduct rightBasis) (altRightBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((altRightBasis.tensorProduct rightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (altRightBasis.tensorProduct rightBasis)
|
||
(altRightBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M))
|
||
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
|
||
* altRightRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2,
|
||
(↑M)⁻¹ᴴ i x1 * altRightRightToMatrix v x1 x) * (M.1.map star) j x
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((↑M)⁻¹ᴴ i x1 * altRightRightToMatrix v x1 x) *
|
||
(M.1.map star) j x := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [altRightBasis_ρ_apply, rightBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
lemma altLeftAltRightToMatrix_ρ (v : (altLeftHanded ⊗ altRightHanded).V) (M : SL(2,ℂ)) :
|
||
altLeftAltRightToMatrix (TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) v) =
|
||
(M.1⁻¹)ᵀ * altLeftAltRightToMatrix v * ((M.1⁻¹).conjTranspose)ᵀ := by
|
||
nth_rewrite 1 [altLeftAltRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(altLeftBasis.tensorProduct altRightBasis) (altLeftBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((altLeftBasis.tensorProduct altRightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct altRightBasis)
|
||
(altLeftBasis.tensorProduct altRightBasis)
|
||
(TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
|
||
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
|
||
* altLeftAltRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftAltRightToMatrix v x1 x) *
|
||
(M.1)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
|
||
((M.1)⁻¹ x1 i * altLeftAltRightToMatrix v x1 x) * (M.1)⁻¹ᴴ j x:= by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [altLeftBasis_ρ_apply, altRightBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
ring
|
||
|
||
lemma leftRightToMatrix_ρ (v : (leftHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
||
leftRightToMatrix (TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) v) =
|
||
M.1 * leftRightToMatrix v * (M.1)ᴴ := by
|
||
nth_rewrite 1 [leftRightToMatrix]
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
|
||
trans (LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)) ((LinearMap.toMatrix
|
||
(leftBasis.tensorProduct rightBasis) (leftBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M)))
|
||
*ᵥ ((Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2))
|
||
((leftBasis.tensorProduct rightBasis).repr (v))))
|
||
· apply congrArg
|
||
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct rightBasis)
|
||
(leftBasis.tensorProduct rightBasis)
|
||
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M)) v)
|
||
erw [h1]
|
||
rfl
|
||
rw [TensorProduct.toMatrix_map]
|
||
funext i j
|
||
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
|
||
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
|
||
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
|
||
* leftRightToMatrix v k.1 k.2) = _
|
||
erw [Finset.sum_product]
|
||
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
|
||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j
|
||
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j := by
|
||
congr
|
||
funext x
|
||
rw [Finset.sum_mul]
|
||
erw [h1]
|
||
rw [Finset.sum_comm]
|
||
congr
|
||
funext x
|
||
congr
|
||
funext x1
|
||
simp only [leftBasis_ρ_apply, rightBasis_ρ_apply, transpose_apply,
|
||
Action.instMonoidalCategory_tensorObj_V]
|
||
rw [Matrix.conjTranspose]
|
||
simp only [RCLike.star_def, map_apply, transpose_apply]
|
||
ring
|
||
|
||
/-!
|
||
|
||
## The symm version of the group actions.
|
||
|
||
-/
|
||
|
||
lemma leftLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M) (leftLeftToMatrix.symm v) =
|
||
leftLeftToMatrix.symm (M.1 * v * (M.1)ᵀ) := by
|
||
have h1 := leftLeftToMatrix_ρ (leftLeftToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma altLeftaltLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M) (altLeftaltLeftToMatrix.symm v) =
|
||
altLeftaltLeftToMatrix.symm ((M.1⁻¹)ᵀ * v * (M.1⁻¹)) := by
|
||
have h1 := altLeftaltLeftToMatrix_ρ (altLeftaltLeftToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma leftAltLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M) (leftAltLeftToMatrix.symm v) =
|
||
leftAltLeftToMatrix.symm (M.1 * v * (M.1⁻¹)) := by
|
||
have h1 := leftAltLeftToMatrix_ρ (leftAltLeftToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma altLeftLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M) (altLeftLeftToMatrix.symm v) =
|
||
altLeftLeftToMatrix.symm ((M.1⁻¹)ᵀ * v * (M.1)ᵀ) := by
|
||
have h1 := altLeftLeftToMatrix_ρ (altLeftLeftToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma rightRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M) (rightRightToMatrix.symm v) =
|
||
rightRightToMatrix.symm ((M.1.map star) * v * ((M.1.map star))ᵀ) := by
|
||
have h1 := rightRightToMatrix_ρ (rightRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma altRightAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M) (altRightAltRightToMatrix.symm v) =
|
||
altRightAltRightToMatrix.symm (((M.1⁻¹).conjTranspose) * v * ((M.1⁻¹).conjTranspose)ᵀ) := by
|
||
have h1 := altRightAltRightToMatrix_ρ (altRightAltRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma rightAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M) (rightAltRightToMatrix.symm v) =
|
||
rightAltRightToMatrix.symm ((M.1.map star) * v * (((M.1⁻¹).conjTranspose)ᵀ)) := by
|
||
have h1 := rightAltRightToMatrix_ρ (rightAltRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma altRightRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M) (altRightRightToMatrix.symm v) =
|
||
altRightRightToMatrix.symm (((M.1⁻¹).conjTranspose) * v * (M.1.map star)ᵀ) := by
|
||
have h1 := altRightRightToMatrix_ρ (altRightRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma altLeftAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) (altLeftAltRightToMatrix.symm v) =
|
||
altLeftAltRightToMatrix.symm ((M.1⁻¹)ᵀ * v * ((M.1⁻¹).conjTranspose)ᵀ) := by
|
||
have h1 := altLeftAltRightToMatrix_ρ (altLeftAltRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
lemma leftRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) (leftRightToMatrix.symm v) =
|
||
leftRightToMatrix.symm (M.1 * v * (M.1)ᴴ) := by
|
||
have h1 := leftRightToMatrix_ρ (leftRightToMatrix.symm v) M
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
|
||
rw [← h1]
|
||
simp
|
||
|
||
open SpaceTime
|
||
|
||
lemma altLeftAltRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) ℂ)
|
||
(hv : IsSelfAdjoint v) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) (altLeftAltRightToMatrix.symm v) =
|
||
altLeftAltRightToMatrix.symm
|
||
(SL2C.repSelfAdjointMatrix (M.transpose⁻¹) ⟨v, hv⟩) := by
|
||
rw [altLeftAltRightToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp only [SL2C.repSelfAdjointMatrix, MonoidHom.coe_mk, OneHom.coe_mk,
|
||
SL2C.toLinearMapSelfAdjointMatrix_apply_coe, SpecialLinearGroup.coe_inv,
|
||
SpecialLinearGroup.coe_transpose]
|
||
congr
|
||
· rw [SL2C.inverse_coe]
|
||
simp only [SpecialLinearGroup.coe_inv]
|
||
rw [@adjugate_transpose]
|
||
· rw [SL2C.inverse_coe]
|
||
simp only [SpecialLinearGroup.coe_inv]
|
||
rw [← @adjugate_transpose]
|
||
rfl
|
||
|
||
lemma leftRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) ℂ)
|
||
(hv : IsSelfAdjoint v) (M : SL(2,ℂ)) :
|
||
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) (leftRightToMatrix.symm v) =
|
||
leftRightToMatrix.symm
|
||
(SL2C.repSelfAdjointMatrix M ⟨v, hv⟩) := by
|
||
rw [leftRightToMatrix_ρ_symm]
|
||
rfl
|
||
|
||
end
|
||
end Fermion
|