78 lines
2.3 KiB
Text
78 lines
2.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||
/-!
|
||
|
||
## Pauli matrices as complex Lorentz tensors
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace complexLorentzTensor
|
||
open Fermion
|
||
|
||
/-!
|
||
|
||
## Definitions.
|
||
|
||
-/
|
||
|
||
/- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
|
||
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||
|
||
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
|
||
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||
|
||
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ_α_{dot β}`. -/
|
||
def pauliCoDown := {pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
||
Fermion.altRightMetric | β β'}ᵀ.tensor
|
||
|
||
/-- The Pauli matrices as the complex Lorentz tensor `σ^μ_α_{dot β}`. -/
|
||
def pauliContrDown := {pauliContr | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
||
Fermion.altRightMetric | β β'}ᵀ.tensor
|
||
|
||
/-!
|
||
|
||
## Tensor nodes.
|
||
|
||
-/
|
||
|
||
/-- The definitional tensor node relation for `pauliContr`. -/
|
||
lemma tensorNode_pauliContr : {pauliContr | μ α β}ᵀ.tensor =
|
||
{PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `pauliCo`. -/
|
||
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
|
||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `pauliCoDown`. -/
|
||
lemma tensorNode_pauliCoDown : {pauliCoDown | μ α β}ᵀ.tensor =
|
||
{pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
||
Fermion.altRightMetric | β β'}ᵀ.tensor := by
|
||
rfl
|
||
|
||
/-- The definitional tensor node relation for `pauliContrDown`. -/
|
||
lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor =
|
||
{pauliContr | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
|
||
Fermion.altRightMetric | β β'}ᵀ.tensor := by
|
||
rfl
|
||
|
||
end complexLorentzTensor
|